# FERTILITY MANAGEMENT FOR TOMATOES AND PEPPERS

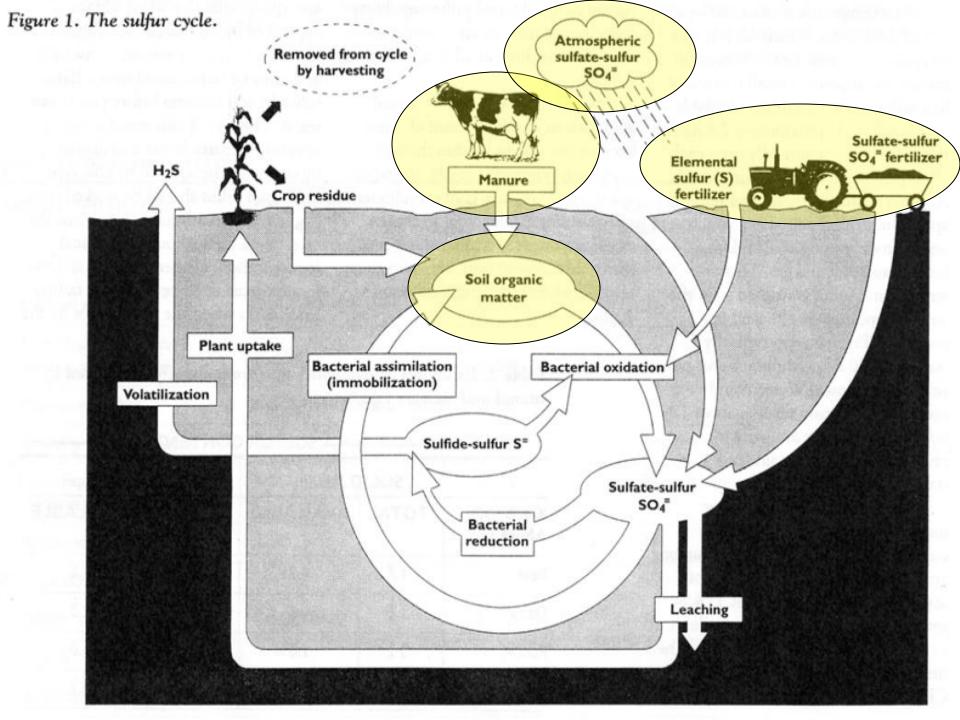
Matt Ruark
Dept. of Soil
Science
A.J. Bussan
Dept. of
Horticulture

2012 Wisconsin Fresh Fruit and Vegetable Conference, 1/16/12








## OUTLINE

Sulfur Soil and plant testing Tomato

- •UW nutrient guidelines
- Nutrients of concern

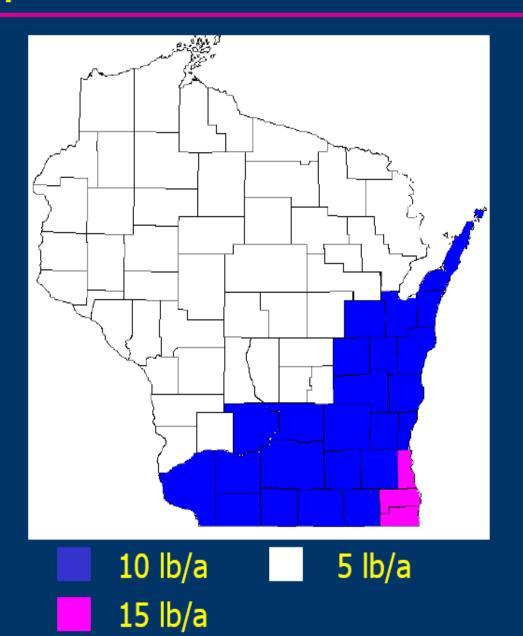
Pepper

- -UW nutrient guidelines
- Nutrients of concern



# CONDITIONS THAT COULD RESULT IN SULFUR DEFICIENCIES

- Low organic matter soils (sands)
- No recent manure applications
- Less sulfur in rainfall
  - •i.e. cleaner air
  - Traditionally more of a concern in N & W Wis.
- Low subsoil sulfur


# SULFUR AVAILABILITY INDEX (SAI)

- Formula for predicting the need for sulfur fertilizer.
- Estimates the amounts of sulfate-S from:
  - Topsoil
  - Organic Matter
  - Subsoil
  - Precipitation
  - Manure

# SAI = SUM OF AVAILABLE S INPUTS

- Organic Matter: 2.8 lbs S/a per 1% OM
- Precipitation: 5, 10, or 15 lb S/a
- Subsoil: 5, 10, or 15 lb S/a
- Manure sulfur credit
  - Species & rate dependent
- Soil sulfate-S test (X 4)

# Precipitation Sulfur Values for SAI



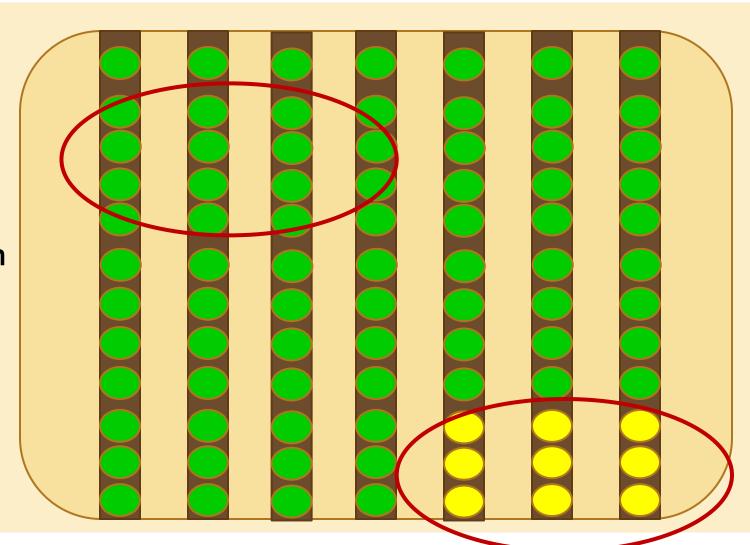
# SUBSURFACE SULFUR BY SOIL GROUP

(each soil type in WI is assigned a subsoil S code)

|            | 9            | Subsoil S code            |    |  |  |
|------------|--------------|---------------------------|----|--|--|
| Soil group | L            | M                         | Н  |  |  |
|            | — <b>l</b> b | — Ib S/a in the subsoil — |    |  |  |
| Α          | 5            | 10                        | 10 |  |  |
| В          | 5            | 10                        | 10 |  |  |
| С          | 5            | 5                         | 10 |  |  |
| D          | 5            | 5                         | 10 |  |  |
| Е          | 5            | 5                         | _  |  |  |
| Ο          | _            | _                         | 20 |  |  |
|            |              |                           |    |  |  |

# SAI INTERPRETATION

- SAI is < 30 (low), apply 10 to 25 lb-S/ac to vegetable crops.
- SAI is 30-40 (optimum), confirm need with plant analysis. If analysis is low, apply as above.
- If SAI > 40 apply no S.


# SOIL AND PLANT TISSUE TESTING

- Soil tests let you know where to start
- Monitoring plant "health" helps to know how to adjust.
- Not all micronutrients have soil tests
- Not all nutrient deficiencies are caused by lack of soil nutrients

# SOIL AND PLANT TISSUE TESTING

Take soil sample from area where plant samples were taken

Compare
"bad" and
"good" parts of
the field –
improves the
diagnosis!



# PLANT TISSUE SAMPLING

# Recommendations for sampling:

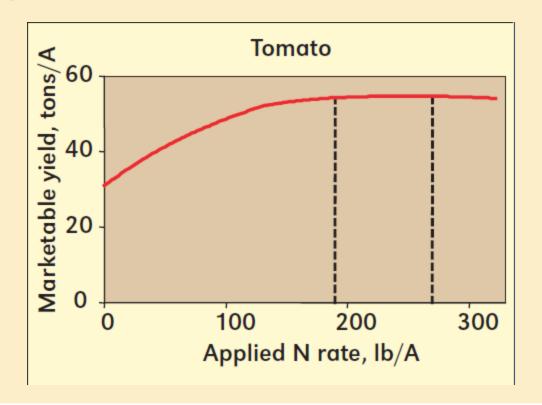
- Tomato: collect mid-season, newest fully developed leaf, 40 plants/sample
- Pepper: collect prior to or at early fruit development, collect petiole <u>and</u> leaflet, 40 plants/sample
- Wipe off dirt, do not wash!
- UWEX does not have recommendations for petiole sap testing for pepper

# ORGANIC MATTER & PH

- The OM measure helps place soil into category for N recommendation:
- <2%, 2 to 10, 10 to 20, >20
- Target pH for tomatoes and peppers:
- 6.0 for mineral soil
- 5.6 for organic soil



- Nitrogen (N)
- Recommendations based on 20-25 tons per acre of fresh weight yield


| Organic Matter (%) | N rate |
|--------------------|--------|
| <2%                | 140    |
| 2 to 10            | 120    |
| 10 to 20           | 100    |
| >20%               | 50     |



- Nitrogen (N)
- Sandy soil consider split application, some preplant (20 to 40), remainder at or after first fruit set.
- The best split-applications may be more of an art than science.
- Goal is to maximize efficient use of N, while not over-promoting vegetative growth.



- What are your yields?
- Example: Data from Ontario, Canada





- P and K
- P: 1.8 lb  $P_2O_5$  removal = 1 ton yield
- K: 8.0 lb  $K_2O$  removal = 1 ton yield

|   | VL                                      | L           | Opt | Н  | VH | EH |
|---|-----------------------------------------|-------------|-----|----|----|----|
|   | Ib of P <sub>2</sub> O <sub>5</sub> /ac |             |     |    |    |    |
| Р | 115                                     | 90          | 40  | 20 |    | 0  |
|   | lb of K <sub>2</sub> O/ac               |             |     |    |    |    |
| K | Ť                                       | 240,<br>265 | 180 | 90 | 45 | 0  |



# Ca, Mg, S

- Follow soil tests, plant tissue tests if needed
- Liming materials may contain adequate amounts of Ca or Mg
- Gypsum is a good source of Ca & S
- -...but remember, gypsum will not change pH!

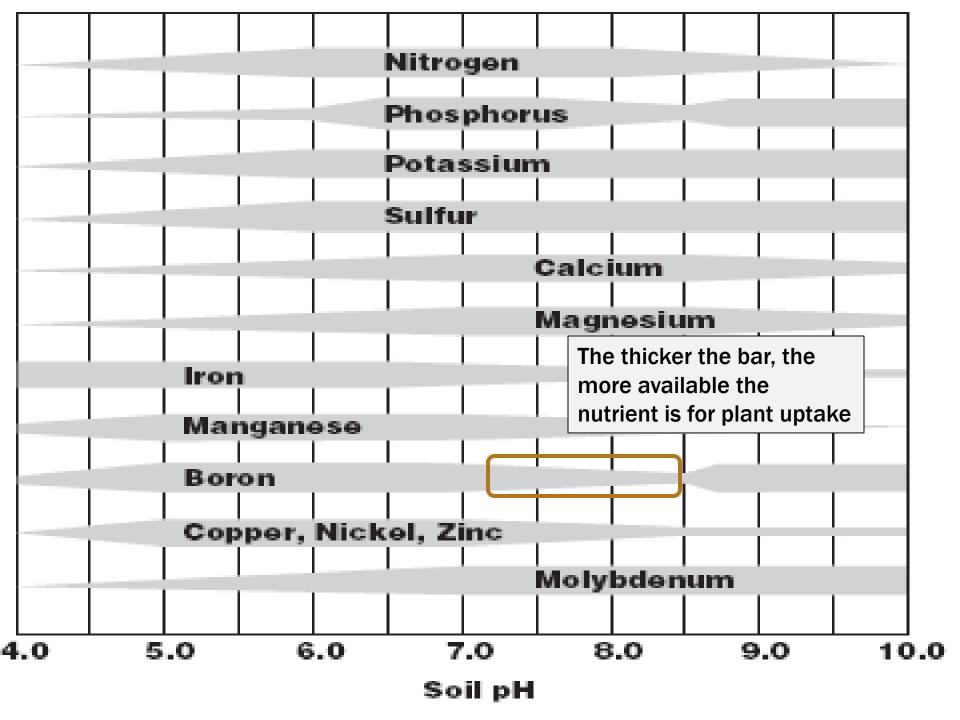
# LIMING MATERIALS

- Dolomitic =  $CaCO_3 \cdot MgCO_3$
- Calcitic = CaCO<sub>3</sub>
- Fly ash = CaO, Ca(OH<sub>2</sub>), CaCO<sub>3</sub>
- $\blacksquare$ Gypsum = CaSO<sub>4</sub>

$$CaCO_3 + 2H^+ = Ca^{2+} + CO_2 + H_2O$$

The carbonate affects the pH - not the calcium!




#### Micronutrients

- Follow with plant tissue tests
- Boron and Copper are of main interest
- Foliar application of B not as effective, difficult to translocate out of plant tissue
- ...but foliar is often the only application method in-season.
- ...but B can be toxic at high levels apply B, follow tissue samples, stop B applications when B becomes excessive



Importance of B studies have shown...

- Application of B increases K in leaf tissue and fruit
- Increases yields
  - Especially at high pH (>7.5)
  - At soil B concentrations of 1.5 and 0.1 ppm both showed a response to application in high pH soil (Huang and Snapp, 2009; MI)





- Gray wall or blotchy ripening
- Associated with:
- Low K, low B, high N

#### How to Identify Graywall





Fruit is uneven in color, both inside and outside, with hardened patches of grayish or yellowish tissue.



# **PEPPER**

- Nitrogen (N) rate
- Based on yield goal of 8-10 tons ac-1

| Organic Matter (%) | N rate |
|--------------------|--------|
| <2%                | 100    |
| 2 to 10            | 80     |
| 10 to 20           | 60     |
| >20%               | 30     |



#### PEPPER

P and K

P: 1.1 lb  $P_2O_5$  removal = 1 ton yield

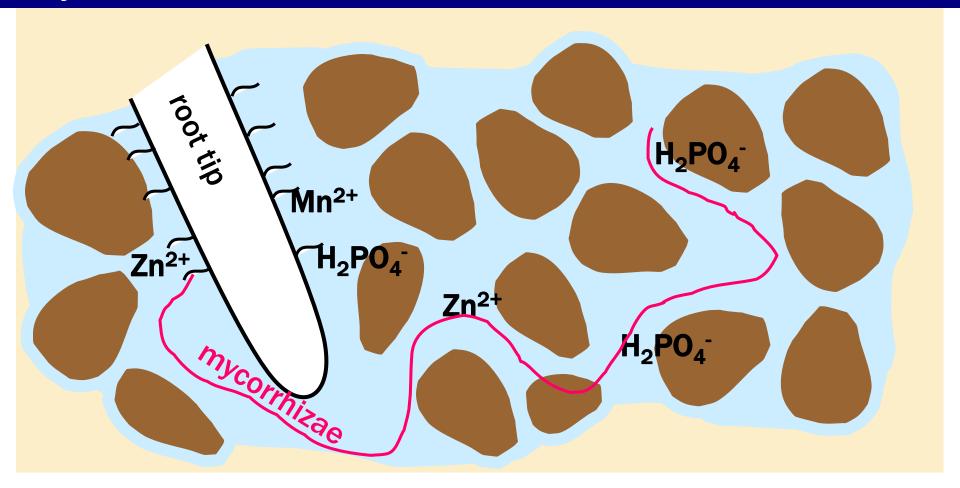
K: 5.6 lb  $K_2O$  removal = 1 ton yield

|   | VL                                      | L           | Opt | Н  | VH | EH |
|---|-----------------------------------------|-------------|-----|----|----|----|
|   | Ib of P <sub>2</sub> O <sub>5</sub> /ac |             |     |    |    |    |
| Р | 85                                      | 60          | 10  | 5  |    | 0  |
|   | lb of K <sub>2</sub> O/ac               |             |     |    |    |    |
| K | 150,<br>175                             | 110,<br>135 | 50  | 25 | 15 | 0  |

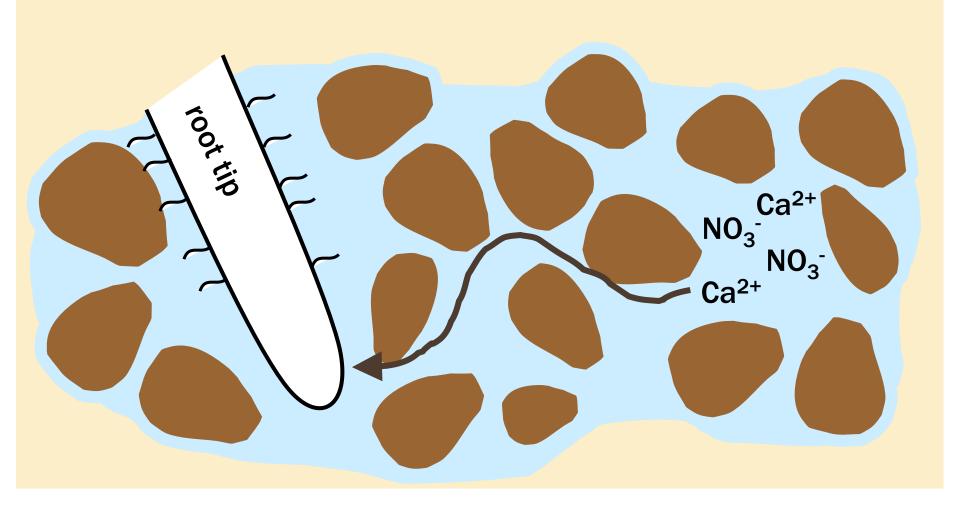
#### **PEPPER**

- -UW recommendations do not rank secondary micronutrients for pepper.
- Use plant tissue testing

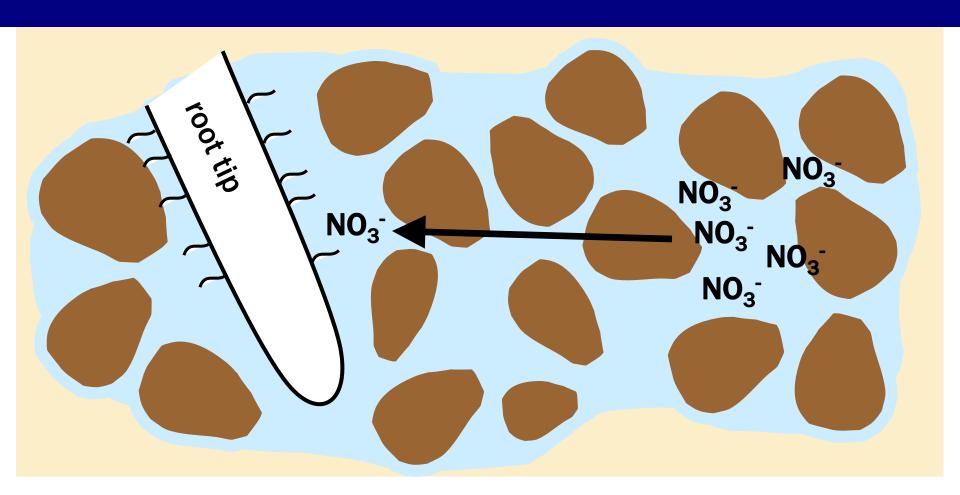
# PEPPER & TOMATO


# Blossom end rot

- Related to Ca deficiency
- Caused by low Ca fertility
- Caused by water stress
- Caused by excessive N or K fertilization
  - N encourages excessive vegetative growth
  - K leads to high soluble salt concentrations in soil and can restrict water uptake and thus Ca.
- Caused by anything that damages roots







- **Root interception** roots obtain nutrients by physically contacting nutrients in soil solution or on soil surfaces;
- roots contact ~1% of soil volume;
- mycorrhizal infection of root increase root-soil contact



# **Mass flow** – dissolved nutrients move to the root in soil water that is flowing towards the roots



**Diffusion** – nutrients move from higher concentration in the bulk soil solution to lower concentration at the root; -In the time it takes  $NO_3^-$  to diffuse 1 cm, K<sup>+</sup> diffuses 0.3 cm, and  $H_2PO_4^-$  diffuses 0.05 cm



# TAKE HOME MESSAGES

- Over-application of N = bad
- •Under-application of K = bad
- Sulfur nutrient to watch!
- To avoid fruit quality issues, use plant tissue and soil testing for:
  - Boron
  - Calcium

QUESTIONS? THOUGHTS? CONCERNS? COMPLAINTS?

# REFERENCES

- Foliar B application to field tomato (IA)
- <u>http://www.public.iastate.edu/~taber/E</u> <u>xtension/Progress%20Rpt%2002/foliarB</u> <u>.pdf</u>
- Fertilization of Pepper in FL (info on petiole sap testing)
- http://groups.ucanr.org/nutrientmanage ment/files/78468.pdf