Soil Sampling, Fertilizer Recommendations, and Economics of Fertilization

Carrie Laboski
Department of Soil Science
UW-Madison

Soil Sampling

Goals of Soil Sampling

- To collect a soil sample that is representative of a field or portion of a field
- Estimate the nutrients needed for economically profitable crop production
- Gain an understanding of nutrient variability within a field
- Monitor changes in nutrient status over time

When to Soil Sample

- pH, P, & K tend to be higher in spring than fall
 - Soil test levels rebound over time movement between pools within the soil
 - Fall sampling generally provides a more conservative (larger) fertilizer recommendation
- Be consistent with timing
- Sampling frozen ground is generally not a good idea

How to Take a Soil Sample

- Tools
 - Buckets

Probes/augers

How to Take a Soil Sample

- Sample to plow depth or at least 6"
 - Be consistent with depth every year
 - Push aside residue
- 0 8" sample = 21 ppm
- 0 6" sample = 25 ppm
- 0 4" sample = 30 ppm

How to Take a Soil Sample

- Place 10-20 cores in buckets and <u>mix thoroughly</u> for a composite sample
- Place ~ 2 cups of soil in sample bag
 - Bag should be labeled with your name, field id, and sample number (eg. Laboski – Field A – Sample 3)
- Mark location of sample on an aerial map or drawing
- Fill out soil info. sheet

Where to Soil Sample

- Types of sampling schemes
 - Whole field
 - Grid
 - Zone
- Scheme used is determined by:
 - Expected fertilizer management approach
 - Sampling history
 - Existing fertility level

Whole Field

- Used where a single fertilizer recommendation will be used in a field
- Conventional sampling
- Plus relatively cheap
- Minus no info. about nutrient variability

Whole Field – Sampling Intensity

Field characteristics	Field size (acres)	Suggested number of samples
Fields tested > 4 years ago; <u>or</u> Fields testing in responsive range	All fields	1 sample/ 5 acres
Non-responsive fields tested ≤ 4	5 – 10	2 samples/ field
years ago	11 – 25	3 samples/ field
	26 – 40	4 samples/ field
	41 – 60	5 samples/ field
	61 – 80	6 samples/ field
	81 - 100	7 samples/ field

- Responsive range is where <u>either</u> soil test P or K are in the high (H) category or lower
- Non-responsive range is where <u>both</u> soil test P & K are in the very high (VH) or excessively high (EH) category

Whole Field

- Avoid sampling unusual areas:
 - Dead furrows or back furrows
 - Lime, sludge, or manure piles
 - Near fences or roads
 - Rows where fertilizer has been banded
 - Eroded knolls/ low spots
- If distinctive area is large enough, sample separately

Whole Field

 Sampling pattern for 15 acre field with past soil tests in responsive range

Each sample should be composed of at least 10 cores

Grid

- Used where nutrients will be applied variably
- Can be useful if purchase/rent new ground and past history not well known
- Plus good assessment of nutrient variability
- Minus expensive

Grid

- Unaligned systematic grid point method
 - 300' (2.1 acre) grid if both P & K are in nonresponsive categories (VH & EH)
 - 200' (0.92 acre) grid if either P or K are in responsive categories (below H)

- Sample locations have GPS coordinates
- Sample consists of at least 10 cores composited within a 10' radius of grid point

Zone

- Used where management may be different across a field
- Zone borders and/or sampling points can be georeferenced
- Plus/Minus
 - Provides an assessment of variability better than whole field, not as good as grid
 - Cost Effective

Zone

- Zone delineation based on knowledge of the field
 - Soil and/or yield maps
 - Topography/elevation map
 - Past history
 - Nutrient maps from previous grid sampling
- Follow whole field sampling intensity guidelines, considering the zone a field

Zone Delineation

Limed 5 years ago

Never limed

2 zones

Formerly 2 fields now all 1 field

2 zones

15 T/a manure last year

No manure

2 zones

3 zones

Contour Strip Fields

- If strips are ≥ 5 acres, sample each strip separately
 - Use whole field sampling intensity guidelines
- If strips are < 5 acres and cropping & management histories are identical:
 - Combine cores from 2 3 strips
- If grid sampling a contour striped field, make sure sampling locations are in each strip

Fields requiring special sampling procedures

- Chisel plowing and offset disking
 - ¾ of tillage depth
- Till-plant and ridge till
 - Sample ridges to 6" and between rows (furrows) to 4"
- No-till
 - 0-2" for pH
 - 0-6" for nutrients

Soil Sampling

See UWEX Factsheet A2100 for additional details

Soil Testing

 Samples must be analyzed by a Wisconsin DATCP certified lab

Analyses must follow specified procedures

UW recommendations

DATCP Certified labs

- UW Soil and Plant Analysis Lab Madison
- UW Soil and Forage Analysis Lab Marshfield
- A & L Great Lakes, Inc. Fort Wayne
- Ag Source Cooperative Services
- Dairyland Laboratories
- Mowers Soil Testing Plus, Inc.
- Rock River Laboratory
- List current as of October 2004

Specified Procedures

 Details of procedures can be found at: http://uwlab.soils.wisc.edu/procedures.htm

Recommendations

- Recommendations for nutrients must be consistent with UW recommendations
 - UWEX Bulletin A2809
- UW recommendations
 - Best estimate to optimize economic return
 - Not developed as an environmental standard
 - Based on research on Wisconsin soils

Soil Test Interpretation Categories

Adapted from Havlin et al.,1999 using WI interpretations

* Fertilizers used at high soil test levels are for starter or maintenance purposes

Relationship Between P & K Soil Test and Fertilizer Recommendation

Relationship Between P & K Soil Test and Fertilizer Recommendation

Soil Test Category	Fertilizer Recommendation Amount
Very Low, Low	Crop removal +
Optimum	Crop removal
High, Very High	½ or ¼ Crop removal
Excessively High	None

UW Recommendations – P & K

- Recommendations in A2809 consider:
 - Crop demand (Table 4, p 17)
 - Soil type (Table 10, p 25-32)
 - Get subsoil group code
 - Soil test level (Tables 5 & 6, p 19-20)
 - Determines interpretation range, probability of response
 - Yield goal
 - Determine relative nutrient need

N Recommendations

	Sands/	loamy sands	Other soils yield potential				
ОМ	Irrigated	Non-irrigated	Low/Med	High/Very High			
%			lb N/a				
< 2	200	120	150	180			
2-9.9	160	110	120	160			
10-20	120	100	90	120			
> 20	80	80	80	80			

Subtract legume & manure N credits

- Does not include ≤ 20 lb N/a in starter
 - Any starter N > 20 lb N/a should be subtracted from rate in the table
- If > 50% residue cover after planting, increase rate by 30 lb N/a
- Optimum N rate similar for good or bad year not a function of yield goal

Legume N Credits

	Sandy	/ Soils	Other Soils		
	Regr	owth	Regr	owth	
Crop	< 8"	> 8"	< 8"	> 8"	
		lb/	′A		
Alfalfa, > 70% stand	100	140	150	190	
Alfalfa, 30-70% stand	70	110	120	160	
Alfalfa, < 30% stand	40	80	90	130	
Alfalfa, seeding	0	60	0	100	
Red Clover/Birdsfoot Trefoil, > 70%	80	110	120	150	
Red Clover/Birdsfoot Trefoil, 30-70%	50	90	90	130	
Red Clover/Birdsfoot Trefoil, < 30%	30	60	70	100	
Vetsch	40	110	90	160	
Soybean	()	4	0	
Beans (snap/dry), peas	()	2	0	

Notes: Forage Legume N Credits

- Credits not affected by:
 - Time of killing
 - Method of killing
 - Tillage
- 2nd year credits
 - 50 lb N/a for good or fair stands
 - No credit on sands and loamy sands

Stand Assessment

Assessment	Stand	Alfalfa
	%	Plants/ft ²
Good	> 70	> 4
Fair	30 – 70	1.5 – 4
Poor	< 30	< 1.5

Lime Recommendations

- Based on:
 - Soil pH, OM, buffer pH, target pH
- Recommendation based on crop with greatest target pH
- Lime recommended when:
 - soil pH < target pH 0.2
- Report indicates T/a of 60-69 and 80-89 lime needed to reach target pH

Lime Recommendations

Rotation 1				
Crop	Target pH			
Corn	6.0			
Oats	5.8			
Alfalfa	6.8			
Alfalfa	6.8			
Lime to 6.8 if pH is \leq 6.6				

Rotation 2					
Crop	Target pH				
Corn	6.0				
Oats	5.8				
Red Clover	6.3				
Red Clover	6.3				
Lime to 6.3 if pH is ≤ 6.1					

Reading a Soil Test Report

Samples Analyzed By:

UW Soil & Plant Analysis Lab 5711 Mineral Point Road Madison, WI 53705

SOIL TEST REPORT

COOPERATIVE EXTENSION University of Wisconsin-Extension University of Wisconsin-Madison Soils Department, Madison, WI

Results also available on-line at http://uwlab.soils.wisc.edu/reports

lab number: 12345 access code: 12345

This Report is for: Bucky Badger

LAB #: 12345 County Account No. Dane 556996 Date Received Date Processed 8/27/2003

11300	2003	8/2//200
Slope 2%	Acres 3	Plow Depth 7*
Soil Nan Antig	ne O	
Field Na 1	me	

	NUTRIENT RECOMMENDATIONS										
Cropping Sequence	Yield Goal	Cro	Crop Nutrient Need Fertilzer Credit N P2O5 K2O Legume N Menure N P2O5					K20	N N	P205	K2O
	per acre	-	— bs/a —		- lbs/a -	-	- ts/s -		-	bs/a	
Corn, grain	131-150 bu	150	25	70	0	0	0	0	150	25	70
Oat	61-90 bu	60	15	90	0	0	0	0	60	15	90
Alfalfa	4.6-5.5 tons	0	65	290	0	0	0	0	0	65	290
Alfalfa	4.6-5.5 tons	0	65	290	0	0	0	0	0	65	290

The lime required for this rotation to reach pH 6.8 is 4 T/a of 60-69 lime or 3 T/a of 80-89 lime.

ADDITIONAL INFORMATION

If lime has been applied in the last two years, more lime may not be needed due to incomplete reaction.

Year 1: If corn harvested for silage instead of grain add extra 30 lbs P2O5 per acre and 90 lbs K2O per acre to next crop.

If barley or oats are underseeded with a legume forage, reduce nitrogen by 50%.

Starter fertilizer (e.g. 10+20+20 lbs N+P2O5+K2O/a) is advisable for row crops on soils slow to warm in the spring.

A soil nitrate test may better estimate actual corn needs.

If conservation tillage leaves more than 50% residue cover when corn follows after corn, add an additional 30 N lbs/a.

If alfalfa will be maintained for more than three years, increase recommended K2O by 20% each year.

TEST INTERPRETATION									
Cropping Sequence	Very Low	Low	Optimum	High	Very High	Excessive			
Corn, grain	PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP		РРРРРРРРРРРРРРРРР	РРРРР					
Oat		PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP	еррреререререререререререререререререр	рррррррррр					
Alfalfa	PPPPPPPPPPPPPFF	рррррррррррррррр	рррррррррррррр						
Alfalfa	PPPPPPPPPPPPPPFFKKKKKKKKKKKKKKKKKKKKKK	рррррррррррррррр	рррррррррррррр						
Rotation pH	xxxxxxxxxxxxx	xxxxxxxxx							

LABORATORY ANALYSIS															
Sample Identification	Soil pH	O.M %	Phosphorus ppm	Potesium ppm	Calcium ppm	Magnesium ppm	Estimated CEC	Bortin	Manganese ppm	Zinc	Sulfato-Sulfur ppm	Sulfur Avail, Index	Taxture Code	Sample Density	Buffer Code
1	6.0	1.9	21	86				-		1000	2 00	8 77 8	2	1.00	5.0
				712007											

6.0 1.9 21 86

Example

- Plano soil
- Crop to be grown is corn (180 bu/a)
- Previous crop = soybean, next crop = soybean
- No manure applied within past 5 years
- Tillage = chisel/disk
- Soil test info.
 - P = 25 ppm
 - K = 85 ppm
 - \bullet pH = 6.0
 - Buffer pH = 6.1
 - OM = 3.0%

Example

Subsoil group =	
Yield potential =	
P & K demand level (Table 4) =	
Target pH (Table 4) =	
Soil test P category (Table 5) =	
Soil test K category (Table 6) =	
P recommendation (Tables 14 & 19)	
K recommendation (Tables 14 & 19)	
N recommendation (Tables 20 & 25)	
Lime recommendation (Table 9 & p. 6)	

Example

Subsoil group =	В
Yield potential =	1
P & K demand level (Table 4) =	1
Target pH (Table 4) =	6.3
Soil test P category (Table 5) =	Н
Soil test K category (Table 6) =	L
P recommendation (Tables 14 & 19)	0 lb/a
K recommendation (Tables 14 & 19)	80 lb/a
N recommendation (Tables 20 & 25)	120 lb/a
Lime recommendation (Table 9 & p. 6)	2.4 T/a of 60-69 lime

Law of Diminishing Returns

Soil Test Interpretation Categories

Adapted from Havlin et al.,1999 using WI interpretations

* Fertilizers used at high soil test levels are for starter or maintenance purposes

Prioritizing Fertilizer Applications for Immobile Nutrients

- Soil test to determine nutrient need
- Fully credit nutrients in manure
- Apply nutrients to lowest testing fields first
- Apply some nutrients to all fields likely to respond to nutrient application
- Depending on fertilizer supply and cost, defer nutrient applications on soils testing high or above
- Consider overall nutrient needs and the budget available for purchases

7 "Fail-Safe" Steps for Maximizing Fertilizer Returns with Limited Resources

- 1. Soil test to determine need
- 2. Lime adequately
- 3. Grow best crop possible
- 4. Use "right" rate
- 5. Take nutrient credits
- 6. Maximize efficiency /avoid losses
- 7. Avoid unnecessary additions

Top-Seven "Fail-Safe" Steps for Maximizing Fertilizer Returns with Limited Resources

- 7. Avoid unnecessary additions
- 6. Maximize efficiency /avoid losses
- 5. Take nutrient credits
- 4. Use "right" rate
- 3. Grow best crop possible
- 2. Lime adequately
- 1. Soil test to determine need

UW Department of Soil Science

http://www.soils.wisc.edu/extension