The Most Important Tool in the Nitrogen Management Toolbox

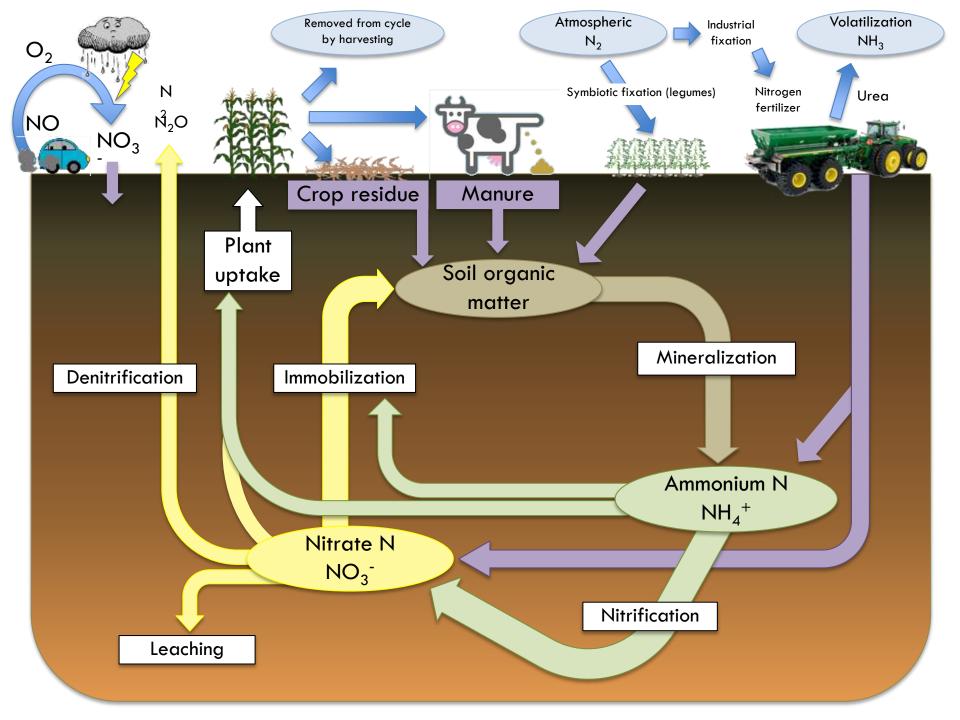
Wisconsin Crop Management Conference January 11, 2011

Carrie Laboski

N management continues to be a challenge

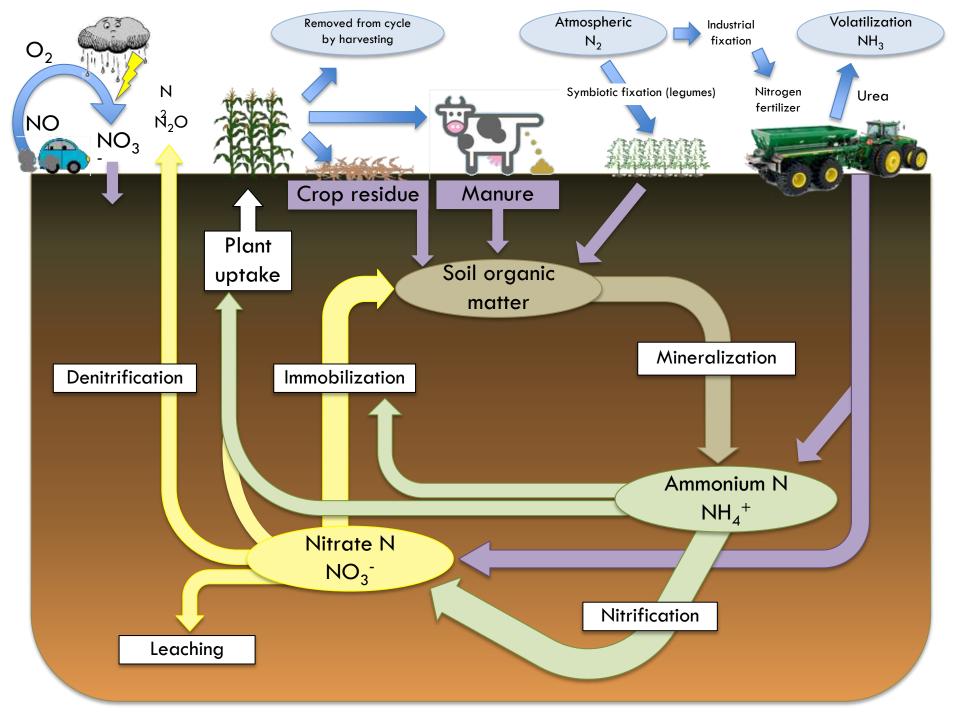
- High fertilizer prices
- Typical and unusual weather challenges
- Confusion about N fertilizer technologies
- Uncertainty regarding manure and legume N credits
- Fear of economic yield loss

Most important tool


Solid understanding of N cycle

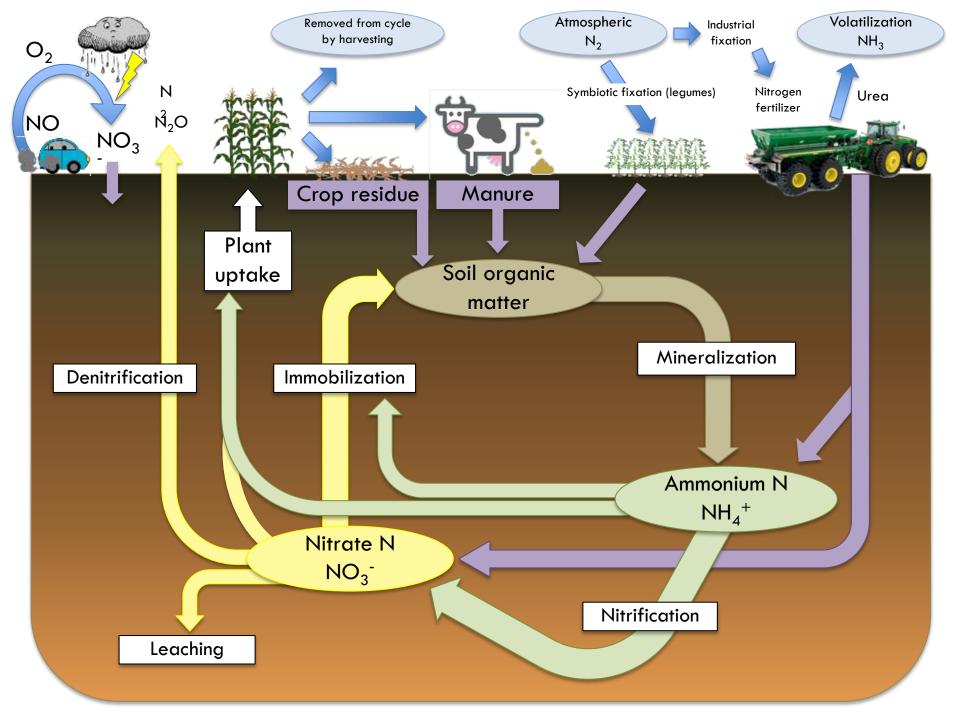
Using the N cycle to make decisions in five situations

- 1. Manure and forage legumes in rotation
- Excessive rainfall on medium- & fine-textured soils
- 3. Topdressing in notill corn or grass pasture
- 4. Fall N applications
- 5. Sandy soils



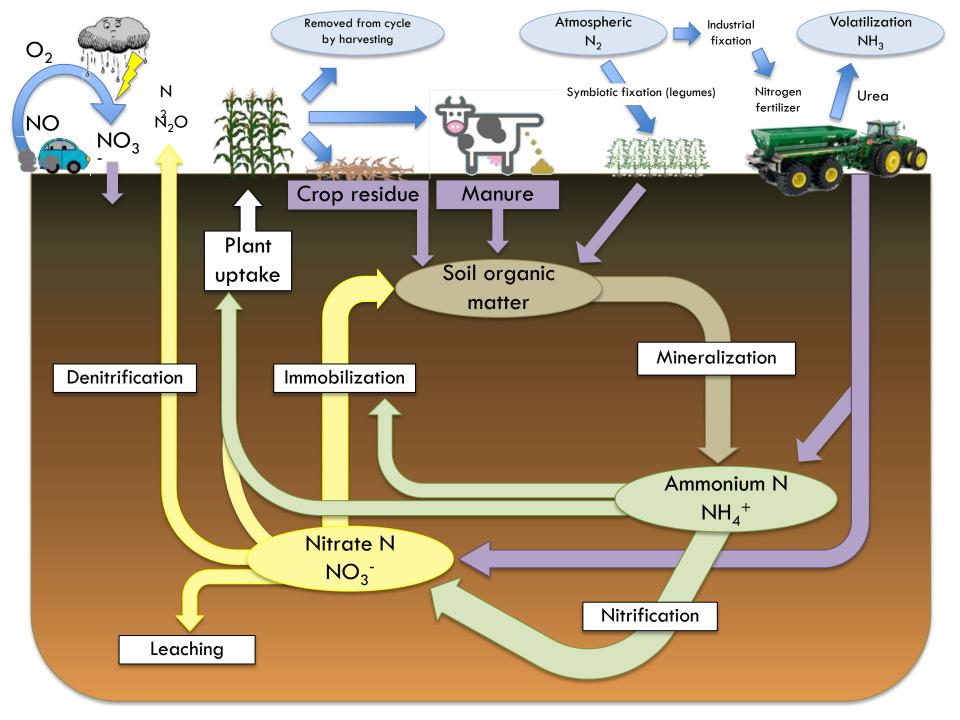
Manure and forage legumes in rotation

 Biggest concern – N credits in years with cool temperatures and/or excessive rainfall



Mineralization

- Organic N \longrightarrow NH₄⁺
- Bacteria & fungi in control
 - Temperature
 - Peak activity between 75°F and 95°F
 - Oxygen
 - occurs to much greater extent in aerobic soils compared to anaerobic soils
 - Moisture
 - Max. activity between 50% and 70% water-filled pore space

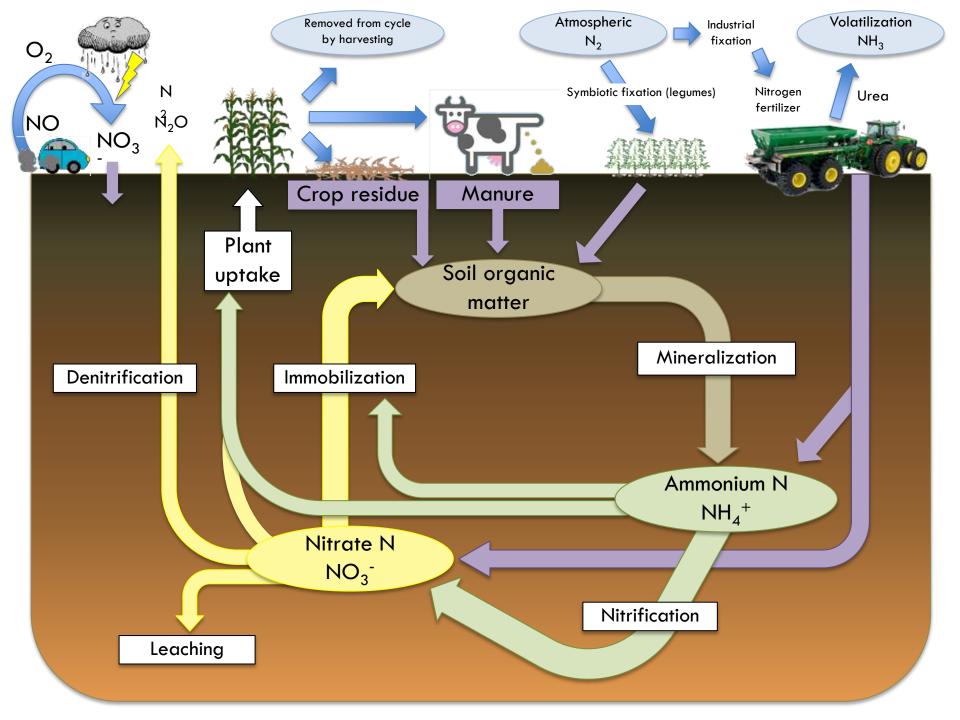


Nitrification

- $NH_4^+ \longrightarrow NO_2^- \longrightarrow NO_3^-$
- Controlled by
 - Supply of NH₄
 - Temperature & moisture (similar to mineralization)
 - Population of nitrifying organisms
 - Soil pH (4.5 to 10.0, 8.5 is ideal)
 - Oxygen is required

Can PSNT be useful?

- If July-August temperatures ≥ average after a cool spring, the total amount of organic N mineralized with be close to expectations
 - PSNT will underestimate available N
- If manure was applied in early fall, PSNT may better estimate N needs rather than using manure N credits
 - Assuming that some N may have been lost



Excessive rainfall on medium- and finetextured soils

Biggest concern – denitrification

Denitrification

- $NO_3^- \longrightarrow N_2$ or N_2O
- Need organic matter (carbon)
- Need nitrate
- Wet soils with low O₂ content
 - Greater saturation periods results in more denitrification
- Temperature (bacteria prefer > 75°F)
- pH (bacteria prefer >5.0)

Estimated N losses from denitrification as influenced by soil temperature and number of days the soil is saturated

Soil temperature (°F)	Days saturated	N loss (% of applied)
55 to 60	5	10
	10	25
75 to 80	3	60
	5	75
	7	85
	9	95

From Shapiro, University of Nebraska

Approximate time until fertilizer N is in the nitrate form

Fertilizer material	Approximate time until NH ₄ ⁺	Approximate time until NO ₃ -
Ammonium sulfate, 10-34-0, MAP, DAP	0 weeks	1 to 2 weeks
Anhydrous ammonia		3 to 8 weeks
Urea	2 to 4 days	1.25 to 2.5 weeks
Ammonium nitrate	50% is NH ₄ +, 0 weeks	50% is NO ₃ -, 0 weeks 50% in 1 to 2 weeks
UAN	25% is NH ₄ +, 0 weeks 50% is urea, 2 to 4 days	25% is NO ₃ -, 0 weeks 25% in 1 to 2 weeks 50% in 1.25 to 2.5 weeks

Effect of Instinct applied preplant with 28% UAN at Arlington in 2008-2010

	Instinct						
Year	N rate	N rate Without With					
	lb N/a	Yield (bu/a)					
2008	mean of 80 & 120	173	178	0.25			
2009	mean of 40 & 80	196	196	0.91			
2010	mean of 40 & 80	196	201	0.14			

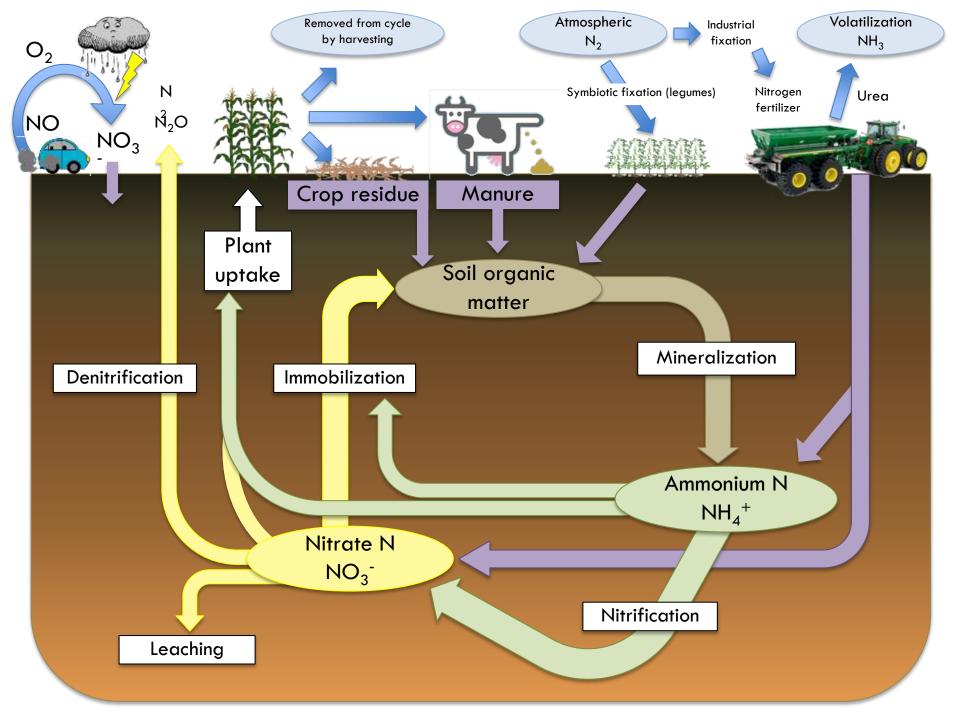
Year	May June		July	
	Rainfall departure from normal (inches)			
2008	-0.2	9.6	1.0	
2009	0.3	0.3	-1.7	
2010	0.7	3.6	5.4	

Year	Preplant	Sidedress
	EONR _{0.10}	(lb N/a)
2008	144	113
2009	69	59
2010	96	57

Relative probability of increasing corn yield using a nitrification inhibitor

	Time of nitrogen application					
Soil type	Fall	Spring sidedress				
Sands & loamy sands	Not recommended	Good	Poor			
Sandy loams & loams	Fair	Good	Poor			
Silt loams & clay loams						
Well drained	Fair	Poor	Poor			
Somewhat poorly drained	Good	Fair	Poor			
Poorly drained	Good	Good	Poor			

Note: Table was developed based on data collected in Wisconsin and the upper Midwest.



Fall N applications

Biggest concern – leaching and denitrification

Fall N applications

- Should be avoided on:
 - Sandy soils
 - Other soils that have a high probability of leaching
 N to ground water
 - With the exception of fall seeded crops
- On silt loam soils, nitrate-containing fertilizers should be avoided

Fall N applications

- Wait to apply fertilizer until soil is $< 50^{\circ}$
 - Nitrification processes are dramatically reduced at low soil temperatures
- Nitrification inhibitors may be beneficial at reducing the potential for nitrate losses
 - However, likely provide a lower economic return than spring applications

Impact on N application timing and use of NServe on corn yield, seven-year average on a poorly drained Mollisol in Waseca, MN (Randall et al., 2003)

N Timing [†]	NServe [‡]	Yield	Income*	N Cost	NServe Cost	Return
		bu/a	\$/a	\$/a	\$/a	\$/a
Fall	No	131	655	67.50		597.50
Fall	Yes	139	695	67.50	8	619.50
Spring	No	139	695	67.50		627.50
Split	No	145	725	67.50		657.50
LSD (0.01)	4				

 $^{^{\}dagger}$ 135 lb N/a was applied as anhydrous ammonia in all treatments. Split application had 40% of the N applied in the spring and 60% sidedressed at V8.

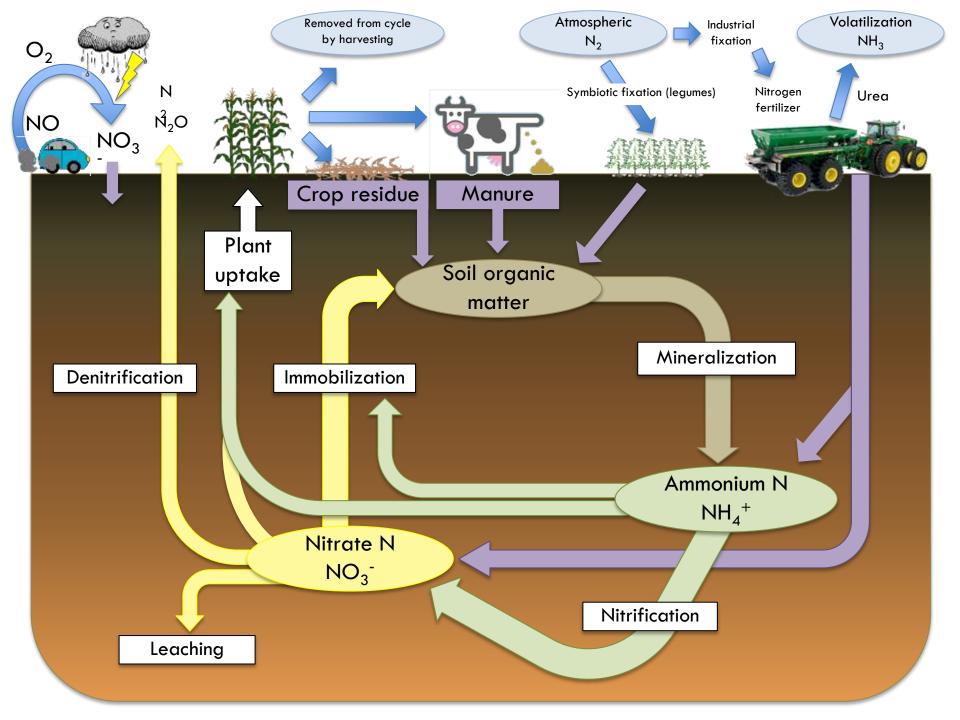
 $^{^{*}}$ Calculations were based on \$5.00/bu corn, \$0.50/lb N, and \$32/gal of NServe.

 $^{^{\}ddagger}$ NServe was applied at a rate of 2 pt/a.

Relative probability of increasing corn yield using a nitrification inhibitor

	Time of nitrogen application					
Soil type	Fall	Spring sidedress				
Sands & loamy sands	Not recommended	Good	Poor			
Sandy loams & loams	Fair	Good	Poor			
Silt loams & clay loams						
Well drained	Fair	Poor	Poor			
Somewhat poorly drained	Good	Fair	Poor			
Poorly drained	Good	Good	Poor			

Note: Table was developed based on data collected in Wisconsin and the upper Midwest.



Topdressing in notill corn or grass pasture

• Biggest concern – ammonia volatilization

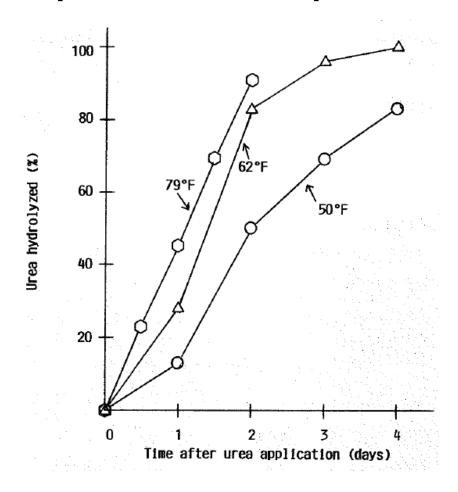
Urea hydrolysis and N volatilization

$$(NH_2)_2CO + 2H_2O \xrightarrow{\text{urease}} (NH_4)_2CO_3$$

urea ammonium carbonate

$$(NH_4)_2CO_3 + 2H^+ \longrightarrow 2NH_4^+ + CO_2 \uparrow + H_2O$$

$$NH_4^+ + OH^- \longrightarrow NH_3\uparrow + H_2O$$


Soil & climatic condition favoring high NH₃ loss from surface-applied urea

- No rainfall after application
 - Significant N loss if no rainfall within 5 days of application
- High temperatures

Urea hydrolysis is relatively quick and temperature dependent

Soil & climatic condition favoring high NH₃ loss from surface-applied urea

- No rainfall after application
 - Significant N loss if no rainfall within 5 days of application
- High temperatures
- High soil pH (≥8.0)
- Intermediate humidity (50-90%)
- Low soil clay and organic matter
- Crop residue on soil surface

Effect of NH₃ volatilization from surface-applied N fertilizer on corn and grass pasture yields

Crop	N Source*	% of added N lost as NH ₃ **	Yield
		%	bu/a or T/a
Corn	None		83
	Urea	16	122
	UAN (28%)	12	125
	Ammonium nitrate	2	132
Grass pasture	None		0.74
	Urea	19	1.09
	Ammonium nitrate	1	1.30

^{*} N sources surface applied at 50 & 100 lb N/a for corn and 60 lb N/a for grass pasture. Corn yields are averages of both N rates.

^{**} NH₃ loss determine by field measurement. From Oberle and Bundy, 1984.

Management considerations

- Is a non-urea based N source available?
- Is 0.25" of rain forecast within the next 2 days?
 - Or do you have the ability to irrigate?
- Is a urease inhibitor economical?

Cost-benefit of urease inhibitor with surface applied urea

N rate	Yield	Net Return to N
lb N/a	bu/a	\$/a
140	214	1000
115	213	1007
100	211	1005
90	208	995

- Used actual corn yield response data
 - Agrotain was not a treatment; High yield potential soil
 - Previous crop = soybean; Max yield (214 bu/a) achieved at 120 lb N/a
- Price of corn is \$5.00/bu; Price of N is \$0.50/lb N
- Agrotain application rate of 5 qt/T urea; \$65/gal
- When Agrotain applied, no N loss
 - Yield the same as when no Agrotain and no N loss
 - Realistically may not occur in all fields

Cost-benefit of urease inhibitor with surface applied urea

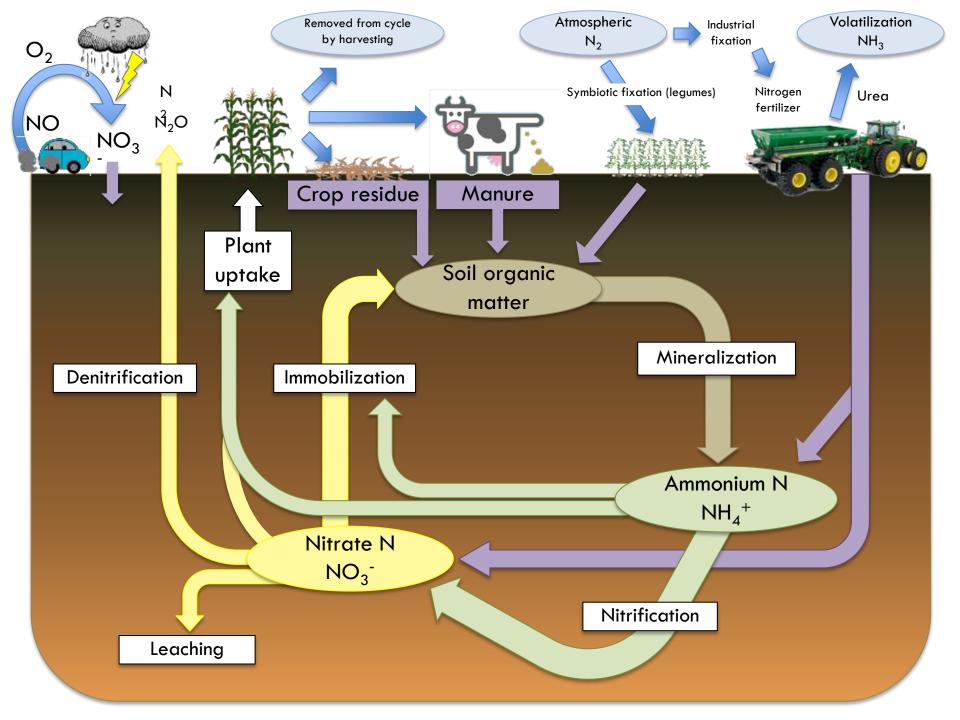
N rate	Yield	Net Return to N	20% N Loss	Yield	Net Return to N
lb N/a	bu/a	\$/a	lb N/a	bu/a	\$/a
140	214	1000	28	212	990
115	213	1007	23	209	987
100	211	1005	20	205	975
90	208	995	18	201	960

- Used actual corn yield response data
 - Agrotain was not a treatment; High yield potential soil
 - Previous crop = soybean; Max yield (214 bu/a) achieved at 120 lb N/a
- Price of corn is \$5.00/bu; Price of N is \$0.50/lb N
- Agrotain application rate of 5 qt/T urea; \$65/gal
- When Agrotain applied, no N loss
 - Yield the same as when no Agrotain and no N loss
 - Realistically may not occur in all fields

Cost-benefit of urease inhibitor with surface applied urea

N rate	Yield	Net Return to N	20% N Loss	Yield	Net Return to N	Agrotain Cost	Net Return to N & Agrotain
lb N/a	bu/a	\$/a	lb N/a	bu/a	\$/a	\$/a	\$/a
140	214	1000	28	212	990	5.60	994
115	213	1007	23	209	987	4.60	1003
100	211	1005	20	205	975	4.00	1001
90	208	995	18	201	960	3.60	991

- Used actual corn yield response data
 - Agrotain was not a treatment; High yield potential soil
 - Previous crop = soybean; Max yield (214 bu/a) achieved at 120 lb N/a
- Price of corn is \$5.00/bu; Price of N is \$0.50/lb N
- Agrotain application rate of 5 qt/T urea; \$65/gal
- When Agrotain applied, no N loss
 - Yield the same as when no Agrotain and no N loss
 - Realistically may not occur in all fields



Sandy soils

Biggest concern – NO₃⁻ leaching

Managing to reduce leaching

- Time of application
- Fertilizer materials
- Use of inhibitors

Effect of timing of UAN application on corn grain yield & N recovery at Hancock, WI

Timing				Year 1		Year 2	
PP	SD	SD+4	SD+8	Yield	Recovery	Yield	Recovery
% N applied			bu/a	%	bu/a	%	
100	0	0	0	140	44	129	26
0	100	0	0	139	56	143	30
50	50	0	0			149	41
0	50	25	25	140	49	138	35
1 <i>7</i>	50	17	1 <i>7</i>	143	65	141	56

All plots received 210 lb N/a as UAN.

PP = preplant

SD = sidedress

SD+4 = sidedress + 4 weeks

SD+8 = sidedress + 8 weeks

Effect of nitrification inhibitors on corn yield and N recovery, 4-year average at Hancock, WI

Inhibitor	Timing	Yield	Recovery	
		bu/a	%	
No	PP	116	37	
	SD	134	63	
Yes	PP	121	51	
	SD	134	65	

All treatments received 140 lb N/a

PP = preplant

SD = sidedress

Sidedress applications are preferred to nitrification inhibitors on sandy soils.

Fertilizer materials

- NH_4^+ forms preferred
- Urea must be incorporated
 - Tillage or 1/4" rain/irrigation within 2 days
- Polycoated urea (eg ESN)

N source & timing effects on corn grain yield at Hancock, WI

N Source	N Timing	2003	Year 2004	2005
		Yield, bu/a		
Control		107	115	96
PCU (ESN)	PP	204NS	167 c	186 ab
	PP+4 wk	205	180 b	189 a
Amm. Sulf.	PP	196	132 e	1 <i>75</i> b
	PP+DCD	202	136 e	183 ab
	4 wk & 8 wk	194	181 b	180 ab

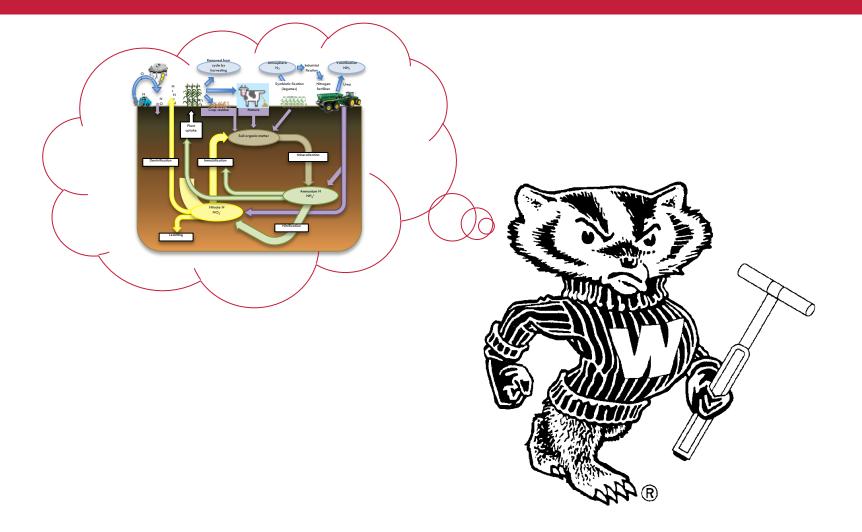
Yields are the average of 150 and 200 lb N/a rates.

PP = preplant

PP + 4 wk = split applications at preplant & 4 wk

PP + DCD = preplant + DCD nitrification inhibitor

4 wk & 8wk= split applications at 4 wk & 8 wk after planting


Years with normal or < normal rainfall, ESN is = or > SD or split amm. sulf. or urea

Years with excessive early rainfall:

- DCD provided no benefit
- ESN preplant > other
 N sources preplant
- Split amm. sulf > preplant ESN

Thanks for your attention. Any questions?

