Performance of new corn N rate guidelines

Carrie A.M. Laboski, Larry G. Bundy, & Todd W. Andraski

Dept. of Soil Science University of Wisconsin-Madison

Corn N rate guidelines - MRTN

- Introduced in winter 2005/2006
- In response to high N costs & low corn price
- Based on results of numerous N response experiments
- Goal: Maximize economic return on N fertilizer

Info. needed to use MRTN

- Soil yield potential
- Previous crop
- N:corn price ratio
 - \$/Ib N ÷ \$/bu corn

	——— N:Corn Price Ratio (\$/lb N:\$/bu) ——					
SOIL AND PREVIOUS CROP	0.05	0.10	0.15	0.20		
	———— Ib N/a (Total to Apply) ————					
HIGH/ V.HIGH YIELD POTENTIAL SOILS						
Corn, Forage legumes, Vegetable legumes, green manures	165 (135-190)	135 (120-155)	120 (100-135)	105 (90-120)		
Soybean, Small grains	140 (110-160)	115 (100-130)	100 (85-115)	90 (70-100)		

120

(100-140)

90

(75-110)

215

(200-230)

120

(100-140)

105

(90-120)

60

(45-70)

205

(190-220)

105

(90-120)

95

(85-110)

50

(40-60)

195

(180-210)

95

(85-110)

90

(80-100)

45

(35-55)

190

(175-200)

90

(80-100)

MEDIUM/LOW YIELD POTENTIAL SOILS

Vegetable legumes, green manures

IRRIGATED SANDS & LOAMY SANDS

Non-Irrigated Sands & Loamy Sands

Corn, Forage legumes,

Soybean, Small grains

All crops

All crops

Some guidelines for using ranges

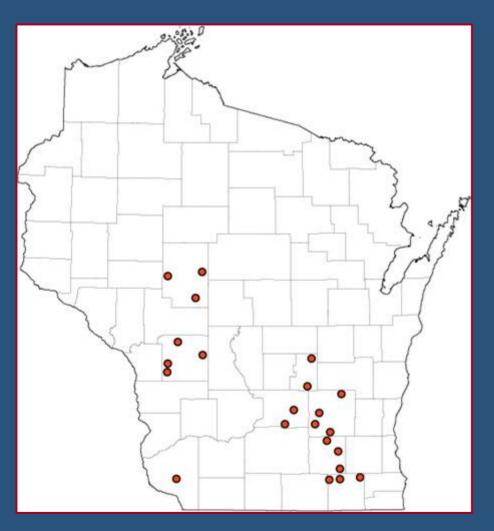
Situation	Portion of Range to Use				
	low	mid	high		
> 50 % residue cover at planting					
Previous crop is small grain on medium/fine textured soils	√	✓			
100 % of N is from organic sources	•	to 20 lb N/a zer may be a			
If there is a likelihood of residual N (carryover N)	√	Or use PPN	Τ		

Some guidelines for using ranges

Situation	Portion of Range to Use				
	low	mid	high		
Medium & fine-textured soils with < 2.0 % OM			✓		
Medium & fine-textured soils with > 10.0 % OM	✓				
Course-textured soils with < 2.0 % OM			√		
Course-textured soils with > 2.0 % OM	✓	√			

100 N:Corn price ratio 0.05 Net return to N (\$/a) 80 0.10 0.15 0.20 60 40 20 **CC - High Yield Potential Soils** 0 50 250 150 200 100

N rate (lb/a)


- A range of N rates can produce profitable yields
- Economics clearly drives the profitable N rate

Early 2006 much interest in MRTN, but reluctance to use on all acres

- Objective:
 - Establish plots on grower fields throughout the state
 - Demonstrate how MRTN performs
 - Collect more data to add to the database

22 Locations

- Range of soil yield potentials
- Previous crop:
 - Soybean at 13 sites
 - Corn at 9 sites
- N rates:
 - 0, 40, 80, 120, 160 lb N/a
 - and 200 lb N/a for HYPS
 - Small amount of starter N at some sites included in total N application
- Replications: at least 3

Data analysis

- Grain yield response to N was fit to an equation for each site
- Economic optimum N rate (EONR) calculated at N:corn price ratios of 0.05, 0.10, 0.15
- Yield and economics of using the MRTN N rate was calculated using equations
 - Compared to EONR

Corn: \$3.00/bu

N: \$0.15, 0.30, 0.45/lb

MRTN v. EONR (Example: 0.05 N:corn price ratio)

Site ID	MRTN rate guidelines		Observed EONR			Difference TN – EO	
	N rate	Yield	N rate	Yield	N rate	Yield	Econ.
	lb N/a	bu/a	lb N/a	bu/a	lb N/a	bu/a	\$/a
1	160	173	129	173	31	0	-4.65
4	160	165	161	165	-1	0	0.15
22	165	156	180	157	-15	-1	0.75
•	•	•	•	•	•	•	•
Average MRTN under applied (n=9)					-16	-2	-3.40
Avera	age MRT	N over a	applied (r	n=13)	44	0	-6.62

MRTN v. EONR Comparison Average for all sites

	MRTN: Under Applied					MRTN: Over Applied			
N:Corn	n	N Rate	Yield	Return	n	N Rate	Yield	Return	
		lb N/a	bu/a	\$/a		lb N/a	bu/a	\$/a	
0.05	9	-16	-2	-3.40	13	44	0	-6.62	

MRTN v. EONR Comparison Average for all sites

	MRTN: Under Applied					MRTN: Over Applied			
N:Corn	n	N Rate	Yield	Return	n	N Rate	Yield	Return	
		lb N/a	bu/a	\$/a		lb N/a	bu/a	\$/a	
0.05	9	-16	-2	-3.40	13	44	0	-6.62	
0.10	11	-28	-5.5	-8.24	11	38	0.9	-8.81	

MRTN v. EONR Comparison Average for all sites

	MRTN: Under Applied				-	MRTN: (Over Ap	plied
N:Corn	n	N Rate	Yield	Return	n	N Rate	Yield	Return
		lb N/a	bu/a	\$/a		lb N/a	bu/a	\$/a
0.05	9	-16	-2	-3.40	13	44	0	-6.62
0.10	11	-28	-5.5	-8.24	11	38	0.9	-8.81
0.15	12	-32	-8.3	-10.20	10	31	1.1	-10.56

Under and over application \$ losses are balanced

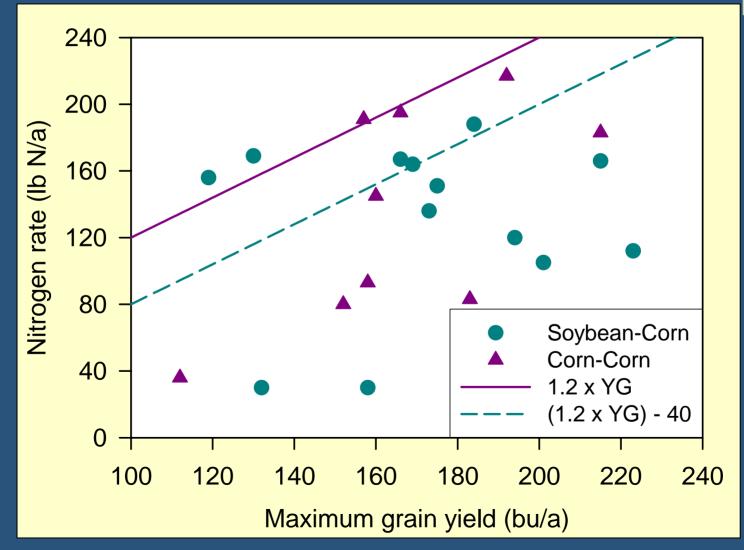
How often does MRTN range encompass EONR?

N:corn price ratio	EONR less than MRTN range	EONR in MRTN range	EONR greater than MRTN range
		%	
0.05	36	36	28
0.10	32	18	50
0.15	32	23	45

Over applied

Under applied

Yield loss with MRTN


	N:Corn Price ratio						
	0.05	0.05 0.10					
	% Relative Yield						
Mean	99	98	97				
Stdev	0.80	2.39	3.64				
Maximum	100	100	100				
Minimum	97	93	89				
Median	100 99 97						

Relative yield is the yield calculated using the MRTN rate for a given price ratio divided by the max. yield achieved at the site

Can the yield goal method predict the amount of N needed?

Conclusions

- Data is representative of range of responses that occur on WI farms
- Remember data from just one year
 - On each field variation from year to year
 - Until we can accurately predict soil N
 mineralization, it will be difficult to determine
 exactly the amount of N needed each year

Conclusions

- Power of MRTN is the averaging of data from multiple locations over multiple years
 - A robust estimate of profitability by balancing economic losses from under and over application

Acknowledgements

- UW-Extension Staff
- Cooperating farmers
- UW-Extension Nutrient Management Team
- UW Nonpoint Pollution Demonstration Project

