Dairy Manure Application Methods: N Credits, Gaseous N Losses, and Corn Yield

Carrie Laboski, Bill Jokela, and Todd Andraski

Soil Science Dept., Univ. of Wisconsin, Madison, WI USDA-ARS, Dairy Forage Research Center, Marshfield, WI

WI Crop Management Conference Jan. 16, 2013. Madison, WI

Situation

- Ammonia losses from surface-applied manure can be large, reducing manure N availability/economic value and contributing to environmental problems
- Nitrous oxide (N₂O) is a potent greenhouse gas that can be released from manure
- Injection or quick tillage incorporation reduces NH₃ loss but may (or may not) increase N₂O emissions
- How do manure management variables (timing, method, incorporation time) affect
 - the balance or trade-off between NH_3 and N_2O losses?
 - N availability to corn?
- · Can sidedressed manure be a viable N source?

Sidedress Manure?

Vermont (Jokela)

Objective

- Evaluate the effect of liquid dairy manure application method and timing, and time of incorporation on:
 - Corn yield and manure N availability/N credits
 - Ammonia losses
 - Nitrous oxide emissions

Field Site

- Marshfield Ag Research Station
- · Withee silt loam
 - Aquic Glossudalf
 - Somewhat poorly drained, 0-2% slope
- Previous crop = corn
 - New site each year

Treatments

- Pre-plant manure (mid- late May)
 - Surface application with disk incorporation
 - Immediate (<1 h)
 - · 1-day
 - 3-day (surface)
 - Injection
 - S-tine (Kongsgilde Vibro-flex)
 - 15-inch spacing
 - · 2-3-inch diam. band , 4-6 in. deep
 - All plots chisel plowed 3-5 days after manure application

Treatments

- Sidedress manure (5-6 If stage)
 - Injection
 - S-tine (Kongsgilde Vibro-flex) with shields
 - 30-inch spacing
 - 4-6 inches deep
 - Surface (Yr 2, 3, and 4)
- Fertilizer N
 - 6 pre-plant rates (0 to 200 lb/acre)
 - Not evaluated for NH₃ or N₂O

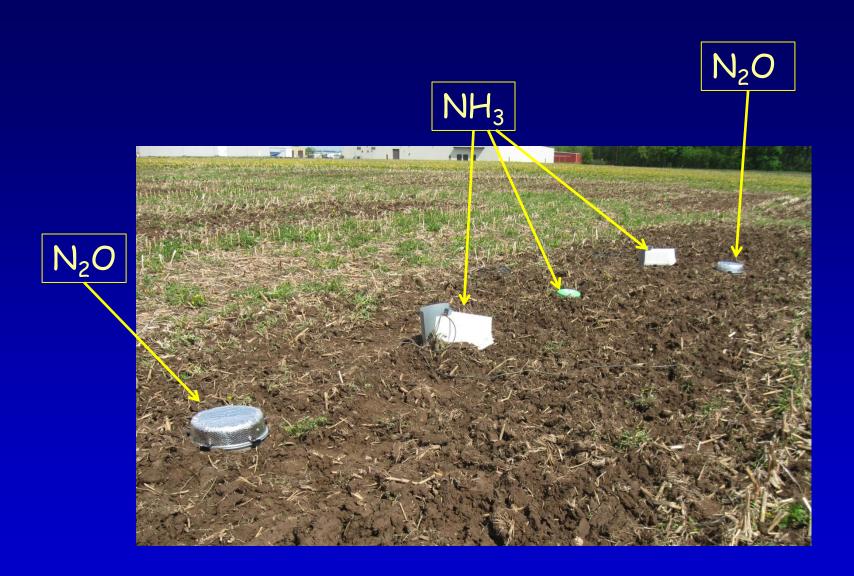
Injected Manure Placement

Manure Source

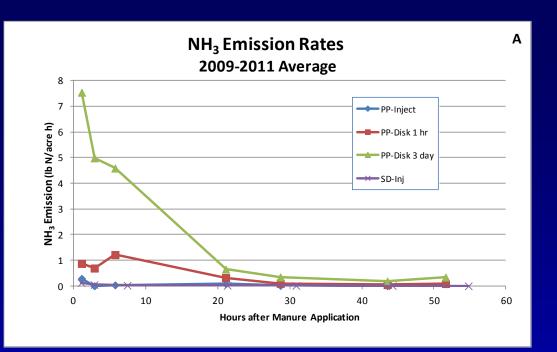
- Liquid dairy manure
 - 6500 gal/acre (target rate)
 - Solids content: 14% (avg.)
 - Sand bedding
 - N application rate (avg.)
 - · 2009-2012
 - 146 lb total N/acre
 - 58 lb NH₄-N/acre
 - 2009-2011 (years NH₃ measured)
 - 158 lb total N/acre
 - 62 lb NH₄-N/acre
 - Large variability

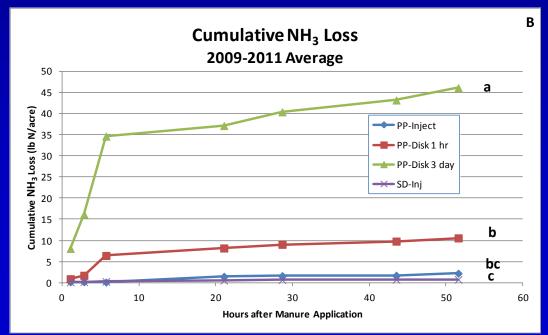
NH₃ emission measurement

- Dynamic chamber/equilibrium concentration (Svensson, 1994; Misselbrook and Hansen, 2001)
 - · 2 chambers, 1 ambient meter/plot
 - 4 passive diffusion samplers (2 types) in each chamber
- Started immediately after manure application; continued through Day 3
- 6 measurement periods
 - Approx. 0-1, 1-2.5, 2.5-6, 6-20, 20-30, and 44-54 h after manure application


N₂O flux measurement

- Static, vented chamber
- GRACEnet protocol
 - Parkin and Venterea, 2010
- 2 chambers/plot
- Sampled approx. weekly May-Oct
 - · More frequently after manure or rain
 - · Less frequently late in season
- 3 samples/time (0, 30, 60 min.)
- Flux calculated by linear regression

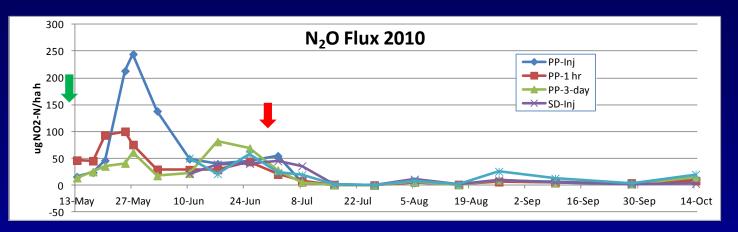

Weather and soil measurements

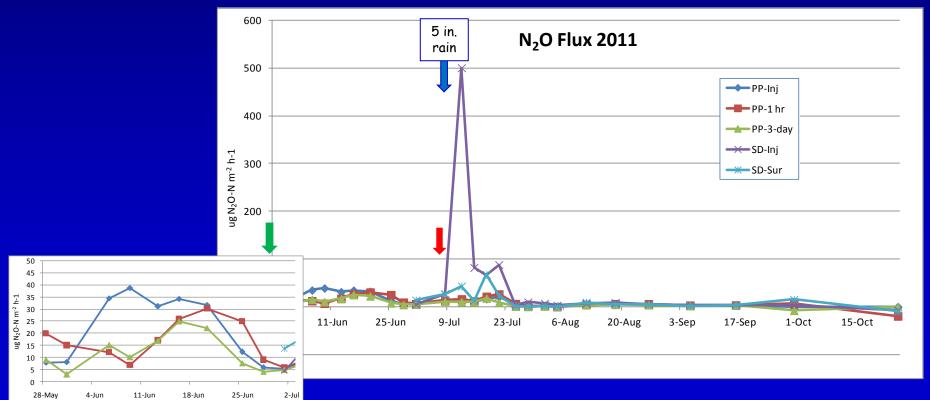

- Throughout season
 - Precipitation, air temperature, wind speed
- At each N₂O sampling
 - Volumetric soil moisture content (Theta probe),
 0-2 inch
 - Soil temperature (2-inch depth)
- Periodically (every 1 to 2-month)
 - Bulk density
 - Soil inorganic N (NO₃-N, NH₄-N)

Experimental Design

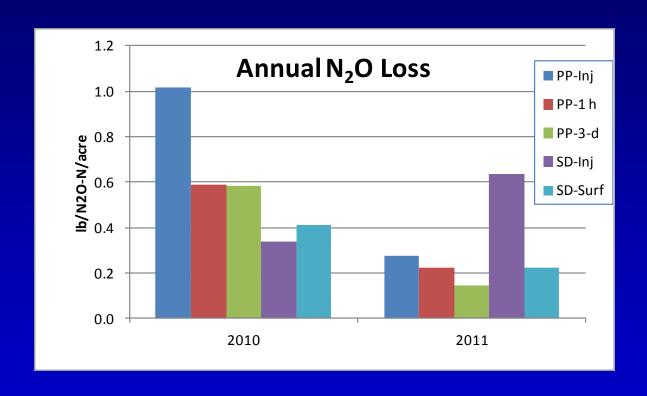
- Randomized complete design
- 4 replicates (3 for NH_3 and N_2O emission)
- Plot size: 15 x 50-ft
 - 50-75-ft alleys for equipment turning

Results

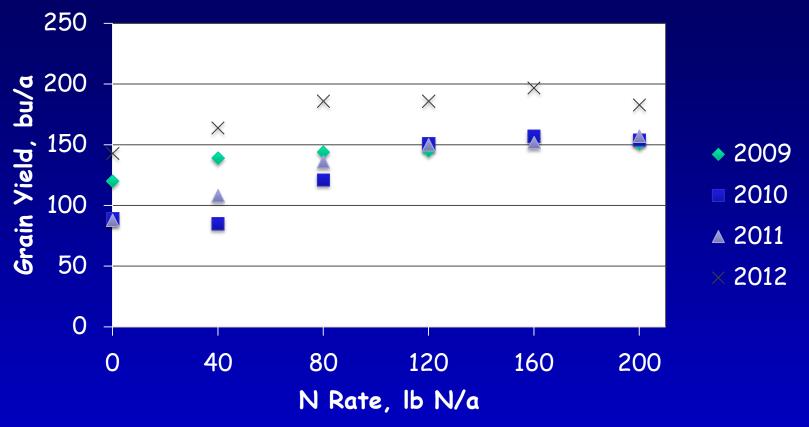



Ammonia Emission 2009-2011 Avg.

Ammonia Emission

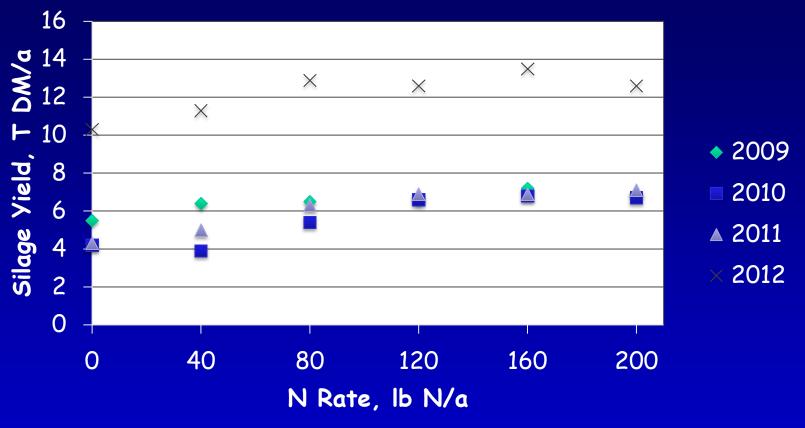

- Most loss in first 6-12 hours after application
- Total 3-day average losses >40 lb/acre for surface application
- NH₃ loss reduced by injection (>90%) or immediate disk incorporation (75%)

N₂O Flux


Cumulative N₂O Emission

N₂O Emission

- Peak in N₂O flux after manure application at PP and/or SD
 - Injection most pronounced
 - 6 to 12-day lag time
- Low levels of N₂O late July to Oct.
- Magnitude and timing (PP vs. SD) varied by year
 - May be explained by combination of rain events/soil moisture, soil temperature, and manure characteristics and N content


Grain response to preplant incorporated urea

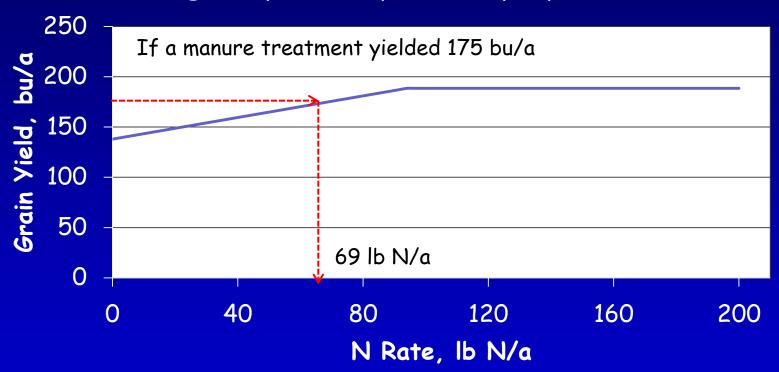
Includes 9 lb N/a in starter

	N rate	2009	2010	2011	2012	Mean
AONR	N rate, lb/a	182	149	133	94	140
	Yield, bu∕a	151	156	155	189	
EONR _{0.10}	N rate, lb/a	126	149	133	94	126
	Yield, bu∕a	149	156	155	189	

Silage response to preplant incorporated urea

Includes 9 lb N/a in starter

	N rate	2009	2010	2011	2012	Mean
AONR	N rate, lb/a	195	149	118	92	139
	Yield, T DM/a	7.0	6.8	7.0	12.9	
EONR _{0.10}	N rate, lb/a	124	149	118	92	121
	Yield, T DM/a	6.8	6.8	7.0	12.9	


Effect of manure application timing and method on grain yield

Timing	Method & days to incorp.	Grain yield					
i iiiiiig	Memod & days to incorp.	2009	2010	2011	2012		
		bu/a					
Preplant	Injected	144 ab	123 a	107	179 a		
	Surface broadcast (< 1 hour)	134 bc	124 a	110	158 bc		
	Surface broadcast (1 day)	133 с	122 a	112	159 bc		
	Surface broadcast (3 days)	137 bc	105 ab	103	166 ab		
Sidedress	Injected	147 a	98 b	114	175 a		
	Surface band (no incorporation)	-	89 b	108	150 c		
	p	0.09	0.07	0.75	0.02		
	LSD(0.10)	10	23	N5	14		

NS, not significant at the 0.10 probability level

N Fertilizer Equivalence Value (NFEV) of Manure

2012 grain yield response to preplant urea

% N availability = NFEV ÷ total N applied

Manure N availability

Timing	Method & days to incorp.	2009	Manure 2010	N Availal 2011	oility † 2012	Mean
			NFEV as a % of total N applied			
Preplant	Injected	48	53	38	63	51
	Surface broadcast (< 1 hour)	22	50	42	31	36
	Surface broadcast (1 day)	19	51	46	32	37
	Surface broadcast (3 days)	30	33	31	43	34
Sidedress	Injected	39	42	60	72	53
	Surface band (no incorporation)	-	26	48	23	32

 $[\]dagger$ Manure N availability = (NFEV / total N rate applied in manure and starter) \times 100

Conclusions

- Injection of manure most effective at reducing NH_3 losses... but also increased N_2O emissions
 - N_2O -N \ll NH_3 , so not economically important; but environmentally important as a greenhouse gas
 - But a portion of NH_3 emitted eventually converted to N_2O (1 %; IPCC, 2006), so trade-off may be minimized

Alternatives

- Tillage incorporation, but consider residue management and erosion/water quality concerns
- Different injection techniques (injector type, depth, etc.)

Conclusions

- Injection resulted in less NH₃ volatilization and greater N availability (50% of total N)
- · For broadcast applications,
 - NH₃ volatilization for <1 hr incorporation was 75% less than incorporation at 3 days
 - But N availability did not always match this trend in individual years
 - Averaged over all years, general trend for lower availability with greater time to incorporation
 - ~30% of total N for no incorporation
- Weather conditions and actual manure N rate affected results in individual years

Conclusions

- Sidedress application of manure is a viable N source for corn
 - Another window of time for manure application
 - May be lower N loss
 - Can use PSNT
 - Practical limitations
 - Equipment: Injection or direct incorporation preferred
 - Capture more N, reduce burning
 - · Field issues: equipment turning, plant damage
- Data support recent changes to UWEX manure N availability
 - 50% injected or broadcast incorporated <1 hr
 - 40% broadcast incorporated 1 to 72 hr
 - 30% broadcast incorporated >72 hr or not incorporated

Thank You

- · Research sponsored by:
 - USDA-ARS
 - WI Corn Growers Assoc.
- Thanks to all the staff & students that helped with field and lab work

