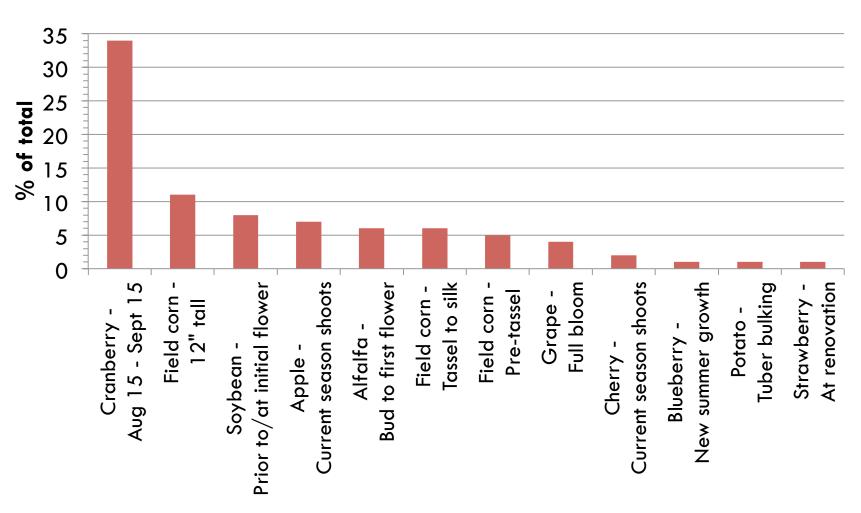
Plant Tissue Testing in Wisconsin: What's New?

John B. Peters Carrie A. M. Laboski

University of Wisconsin-Madison Department of Soil Science

Wisconsin Crop Management Conference January 15, 2014


What do public labs provide to clients for the interpretation of tissue test results?

- Data only client interprets
- Local/in-state values in database
- Literature values used for interpretation
- Combination of local and literature values

What is happening in other states in the upper midwest?

State	Data Only	Interpretation from literature	Field research
		+ local data	ongoing
Iowa	X		Yes
Kansas		X	Yes
Michigan		X	Yes
Minnesota		X	Yes
Missouri		X	No
North Dakota	X		Yes
South Dakota		X	Yes
Wisconsin		X	Yes

Distribution of plant analysis samples by crop and stage of maturity.

UW SPAL data, 2002-2013

Interpretation of Tissue Test Results in Wisconsin

- Sufficiency range approach (SR)
- Diagnosis and Recommendation Integrated System approach (DRIS)
- Plant analysis with standardized scores (PASS) system

Sufficiency Range

<u>Advantages</u>

- Simple
- Values are independent
 - level of one element
 does not influence the
 interpretation of another

<u>Disadvantages</u>

- Too few categories to aid in interpretation
- Does not rank low to high
- Sensitive to maturity and part sampled

DRIS

<u>Advantages</u>

- Scale is continuous and easy to interpret
- Nutrients are ranked from most deficient to most excessive

<u>Disadvantages</u>

- Computations are complicated
- Indices are not independent of each other

DRIS Interpretation

- < -20 almost certain response
- -20 -15 possible response
- -15 +15 normal
- +15 +25 unlikely response
- > +25 remote chance of response

PASS

Advantages

 Combines the features of both SR and DRIS

Disadvantages

 Interpretations available for only 3 crops

Samples Analyzed By:

UW Soil & Plant Analysis Lab 8452 Mineral Point Rd Verona, WI 53593 (608) 262-4364

PLANT ANALYSIS REPORT

COOPERATIVE EXTENSION University of Wisconsin-Extension University of Wisconsin-Madison Department of Soil Science, Madison, WI

Send to:

Soil & Forage Analysis Lab 8396 Yellowstone Dr. Marshfield WI, 54449

Client:

Soil & Forage Analysis Lab 8396 Yellowstone Dr. Marshfield, WI 54449 Account: 555901

Lab Information
Lab Number: 12345
Date received: 7/22/2002

Date processed: 1/2/2007 County: Dane

Sample Information

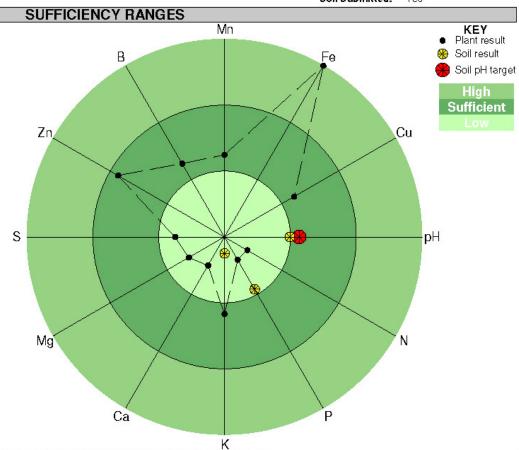
Sample ID: 1 Field: 1

Crop: Field corn
Growth Stage: Tassel to silk
Plant Part: Ear leaf
Appearance: Normal
Soil Submitted: Yes

Plant Results

	T INTE TIESUNG							
Ele	ment	Low	Sufficient	High				
Ν	(%)	1.00						
Р	(%)	0.10						
K	(%)		1.90					
Ca	(%)							
Mg	(%)	0.10	2	7				
S	(%)	0.12						
Zn	(ppm)		32.00					
В	(ppm)		8.00					
Mn	(ppm)		31.00					
Fe	(ppm)			232.00				
Cu	(ppm)		4.00					

Al (ppm) 450.00 Na (ppm) 151.00


Soil Results

pH: 5.8, target pH = 6.0

OM: 3.0%

Ele	ement		Optimum	T.
Р	(ppm)	10 L		
K	(ppm)	30 VL		

Note: L = Low, VL = Very Low, H = High, VH = Very High, E = Excessive

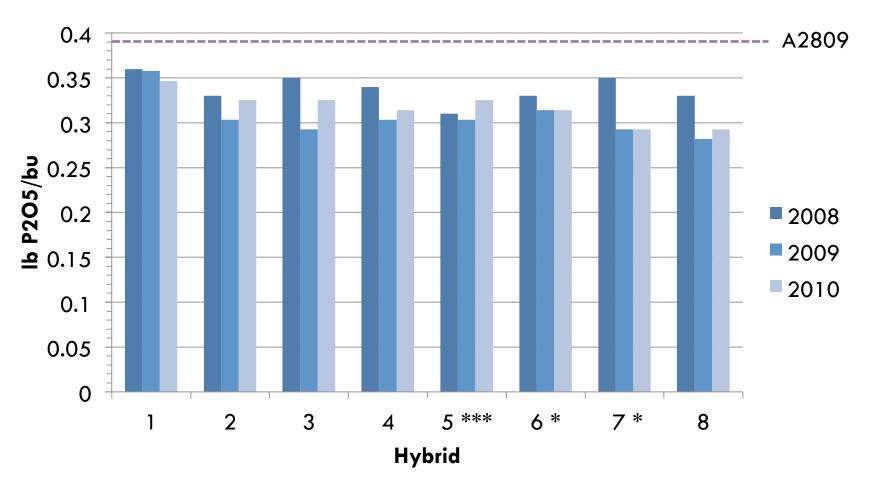
	YIELD RESPONSE INTERPRETATION SYSTEMS						
	System Almost certain Possible Remote Unlikely						
DBIS	Element	PN		S	K Zn		

System		Allinost certain	L <i>ก</i> ออเทเล	rossible Remote		
DRIS	Element	PN		S	K Zn	
DRIS	[ndex	-38 -37		-8	32 51	
DAGG	Element	NPS	Ca Mg	K Cu Mn B Zn	Fe	
PASS	[ndex	-59 -56 -21	-22 -17	-7 -6 -5 -4 7	18	
BACCINIL No. 10 D. 10 Co. 00 C. (0 May 42 K. 2 Co. 0 May 5 D. 1 7a-2 Eu 60						

PASS INI: N:-46 P:-42 Ca:-22 S:-19 Mg:-17 K:-7 Cu:-6 Mn:-5 B:-4 Zn:7 Fe:18

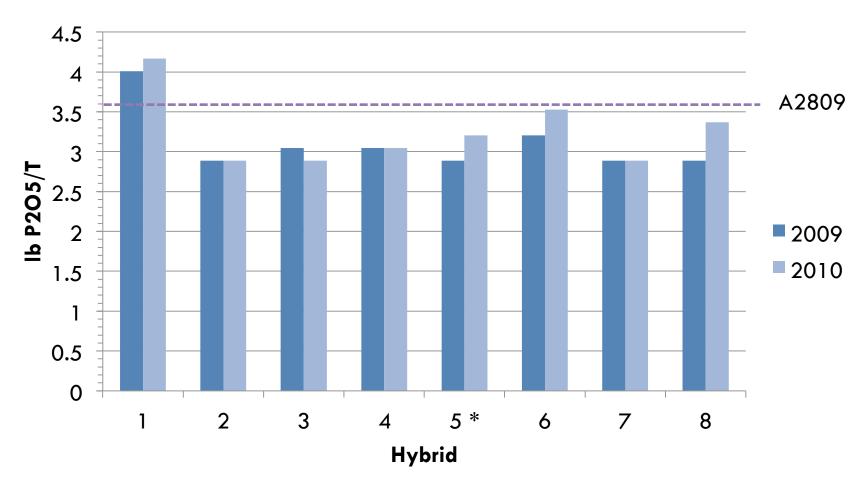
PASS DNI: P:-14 N:-13 S:-2 Zn:13 K:16

Note: DRIS = Diagnosis and Recommendation Integrated System, PASS = Plant Analysis with Standardized Scores, INI = Independent Nutrient Index, DNI = Dependent Nutrient Index

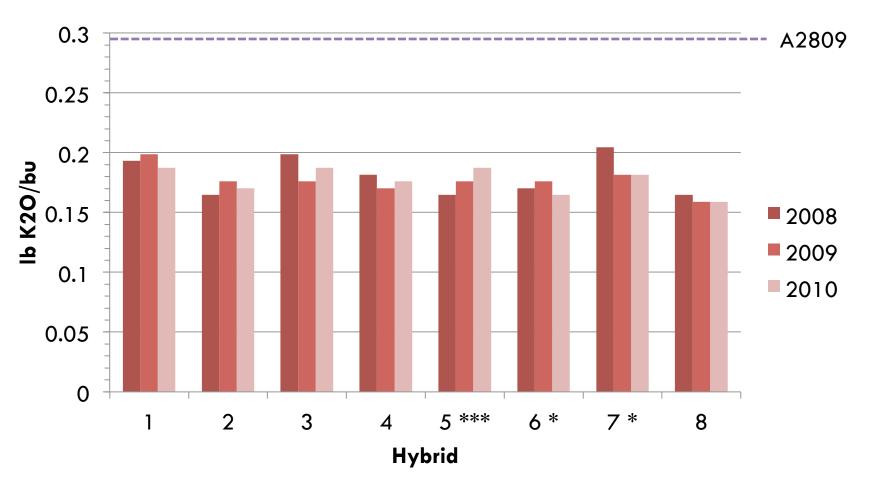

Common Response Elements are in BOLD and Rare Response Elements are NOT. DRIS yield response categories are computed as follows: "Almost Certain" - index < -20, "Possible" - -20 < index < -15,

"Unlikely" - index > 25, "Remote" - any index not in any other category. PASS yield response categories are computed as follows: "Almost Certain" - common response elements with INI < -10, "Possible"
common response elements with INI+DNI < -10 and rare response elements with INI < -10, "Unlikely" - any element with INI> 10, "Remote" - any element not in any other category

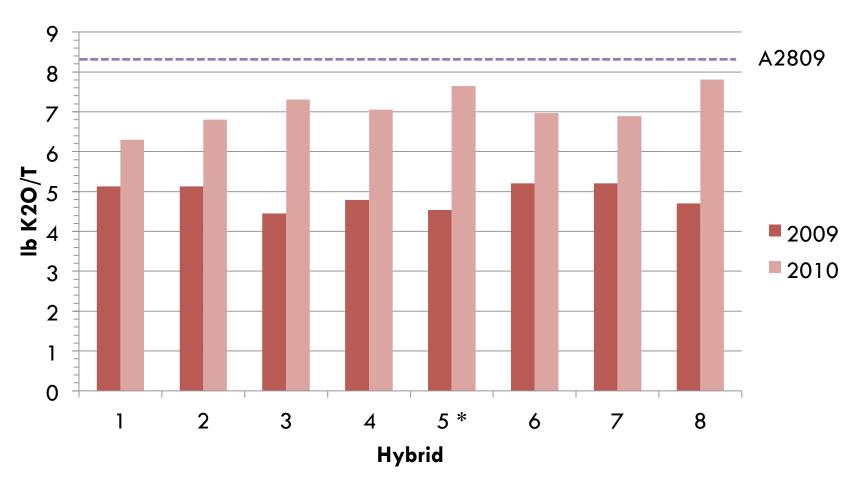
Effect of 8 corn hybrids on grain and silage nutrient content at Arlington ARS


Soil test P and K levels were H or greater in all years

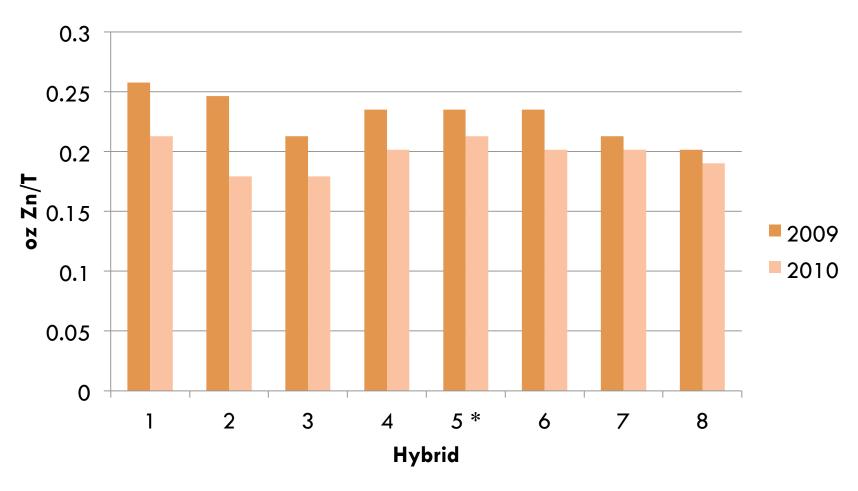
Effect of corn hybrid on GRAIN P_2O_5 content at Arlington ARS


^{* 2008} was a different hybrid than 2009 & 2010 *** 2010 was a different hybrid than 2008 & 2009

Effect of corn hybrid on SILAGE P_2O_5 content at Arlington ARS


^{*} Hybrid were different between 2009 and 2010

Effect of corn hybrid on GRAIN K₂O content at Arlington ARS


^{* 2008} was a different hybrid than 2009 & 2010 *** 2010 was a different hybrid than 2008 & 2009

Effect of corn hybrid on SILAGE K₂O content at Arlington ARS

^{*} Hybrid were different between 2009 and 2010

Effect of corn hybrid on SILAGE Zn content at Arlington ARS

^{*} Hybrid were different between 2009 and 2010

Conclusions

- Corn grain and silage nutrient removals vary by:
 - Hybrid
 - Year/environment
- Nutrient removals are often less than book values
 - Even though yield levels were generally very good

Observations from 2008 & 2009

Alfalfa

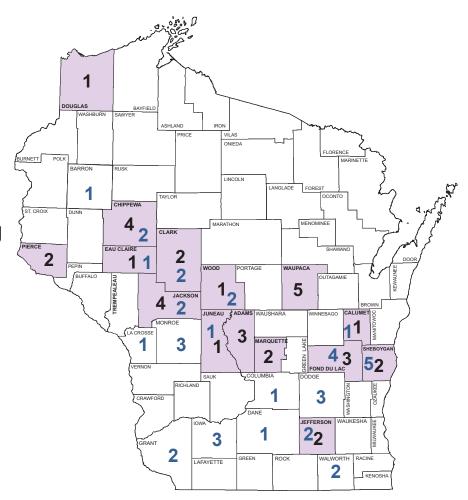
- 81 and 41% of the abnormal & normal samples,
 respectively, were low in S
- 35 % of abnormal & normal were low in K

Observations from 2008 & 2009

- Soybean
 - Nearly all low in S
 - 30-56% low in Mn
 - N and K often low
 - Normal appearing just as likely as abnormal to be low
- Recommended sampling time is prior to or at initial flowing, R1
 - Usually occurs in late June through early July
 - Majority of samples submitted in late July through Aug.

PA Survey of Alfalfa in Wisconsin

Objectives

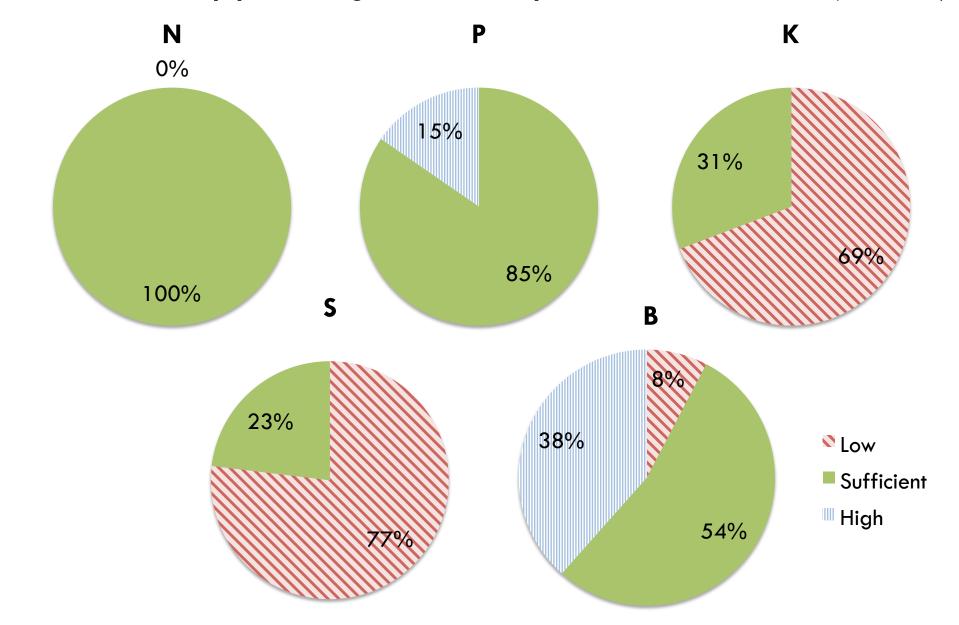

- To obtain info. on nutrition status of Wisconsin's alfalfa crop
- To determine if K and S deficiency are becoming more common throughout Wisconsin or in certain regions

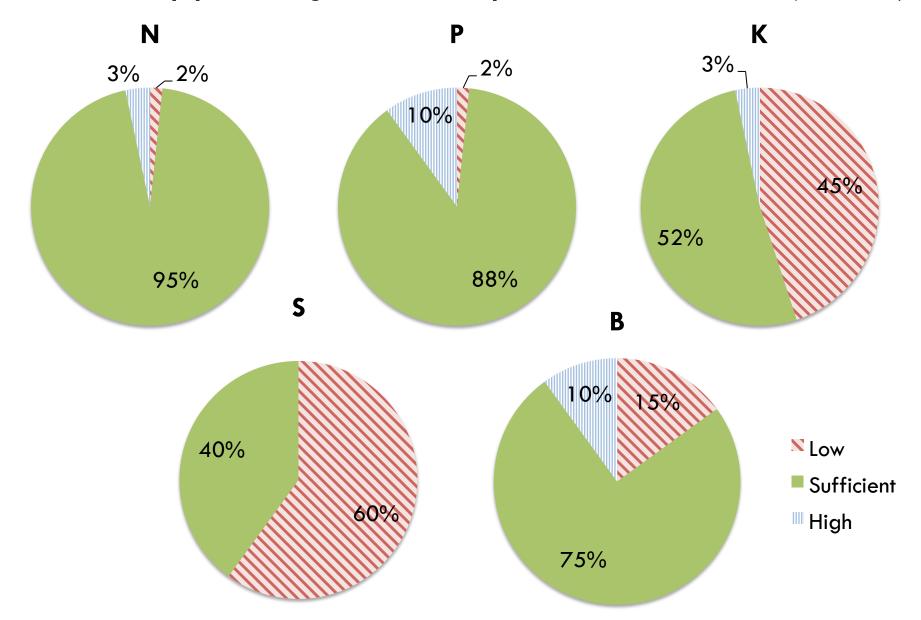
Sampling protocol

- Alfalfa fields throughout Wisconsin
 - No manure or fertilizer S 18 months prior to sampling
 - Plant sample bud to 1st flower stage after 1st or 2nd
 cut
 - Top 6" from 30-40 plants
 - Analyzed to total N and total mineral content
 - -0-6" soil sample
 - 10 cores taken from same area as plant samples
 - Anaylzed for P, K, pH, buffer pH, OM, S, and B

Location of sample fields in 2010 & 2011

- Sampled by UWEX
 - -73 samples submitted
 - 60 normal appearing
 - 13 abnormal appearing
 - 6 fields had both normal & abnormal areas





Results

Abnormal appearing fields or portions of fields (n=13)

Normal appearing fields or portions of fields (n=60)

For all samples (normal & abnormal) both years combined

- UWEX sampled
 - 49 % of all samples were low in K
 - -63 % of all samples were low in S
 - 28 % low in K and S

Potassium applications fall short on normal appearing fields, 2011

STK category (n)	Stand age †	2011 K ₂ O rec. (A2809)	2011 K ₂ O appl. rate	
	yr	lb/a	lb/a	
VL (5)	5.0 <u>+</u> 2.2	338 <u>+</u> 27	21 <u>+</u> 49	
L (10)	3.9 <u>+</u> 1.0	322 <u>+</u> 57	28 <u>+</u> 59	
O (4)	3.0 <u>+</u> 0.8	300 <u>+</u> 85	3 <u>+</u> 6	
H (4)	3.5 <u>+</u> 1.7	135 <u>+</u> 17	17 <u>+</u> 29	
VH (4)	3.3 <u>+</u> 1.3	71 <u>+</u> 19	7 <u>+</u> 13	
EH (2)	2.5 <u>+</u> 0.7	0 <u>+</u> 0	29 <u>+</u> 3	

[†] Includes establishment year to 2011.

Identical trends in 2010

Alfalfa field with patchy areas of yellow

Photo courtesy of Ted Bay, UWEX Grant/Lafayette Cos.

Alfalfa response to 25 lb S/a applied after 1st cutting in 2010, Lafayette Co., WI

		None Calcium Sulfate Ammonium		Ammonium Sulfate				
			Dry Matter T/a					
2nd cut	Normal	1.23	1.29	1.30				
	Abnormal	0.95	1.66	1.79				
3rd cut	Normal	1.21	1.22	1.26				
	Abnormal	0.90	1.49	1.58				
2nd + 3rd	Normal	2.44	2.51	2.56				
	Abnormal	1.85	3.15	3.37				

	Tissue S	Tissue K	Soil Test K		
	0,	%			
Normal	0.24 (L)	1.79 (L)	67 (VL)		
Abnormal	0.14 (L)	2.46 (S)	11 <i>7</i> (O)		

Sufficiency range

Tissue K: 2.25 - 3.5%

Tissue S: 0.25 - 0.50%

Data courtesy of Ted Bay, UWEX Grant/Lafayette Cos.

2011 Soybean Plant Analysis Survey

Objectives

- To evaluate soybean nutrient concentrations relative to UW nutrient sufficiency ranges
 - At different growth stages
 - For different varieties
 - At several locations

2011 Soybean Plant Analysis Survey

Sampling details:

- Uppermost fully developed leaf + petiole at R1& R3 sampled
- Sampled in Soybean
 Variety Trial Plots (10 loc.)
 - Varieties sampled within a region are the same (n=5)
 - Varieties were different between regions
- No visual deficiency symptoms
- Some maturity differences were evident

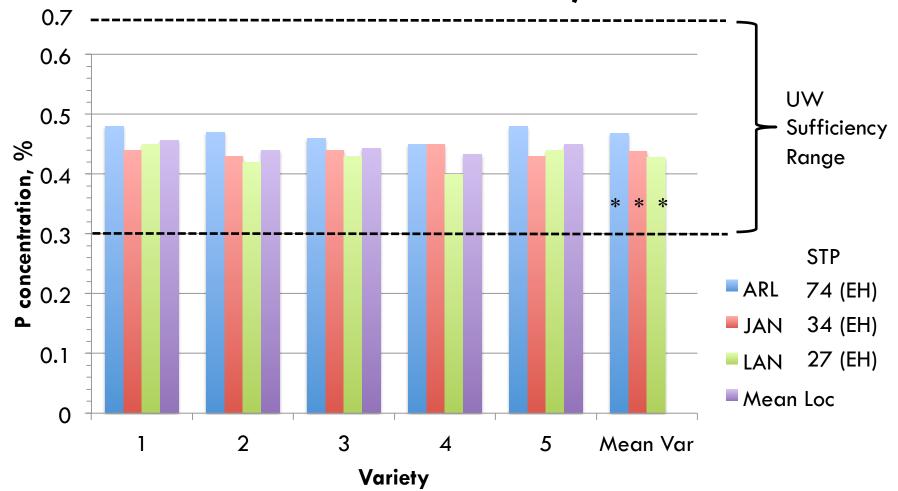
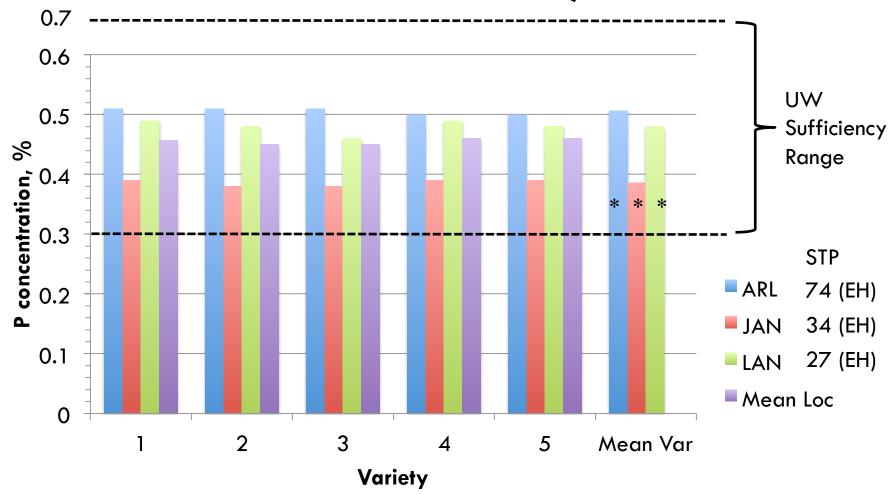
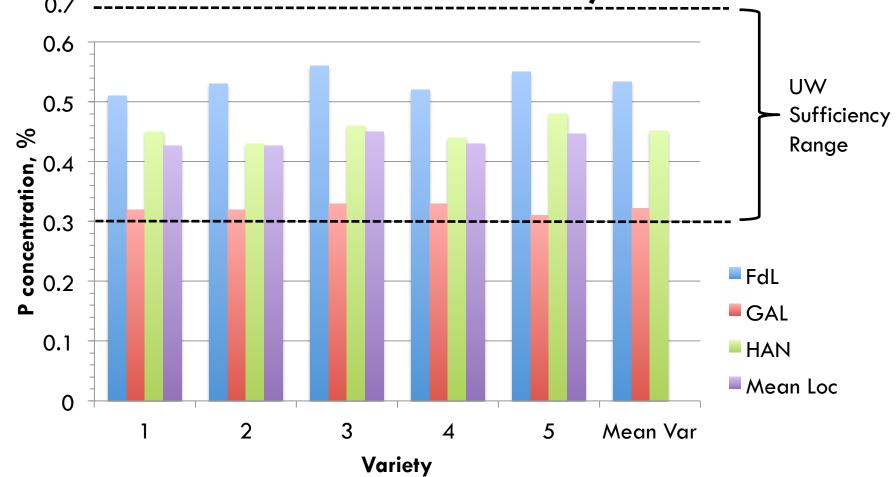
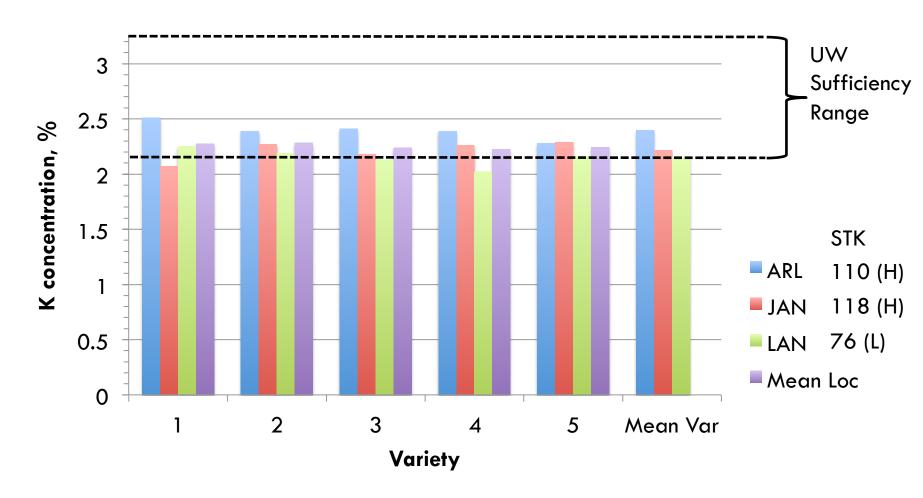


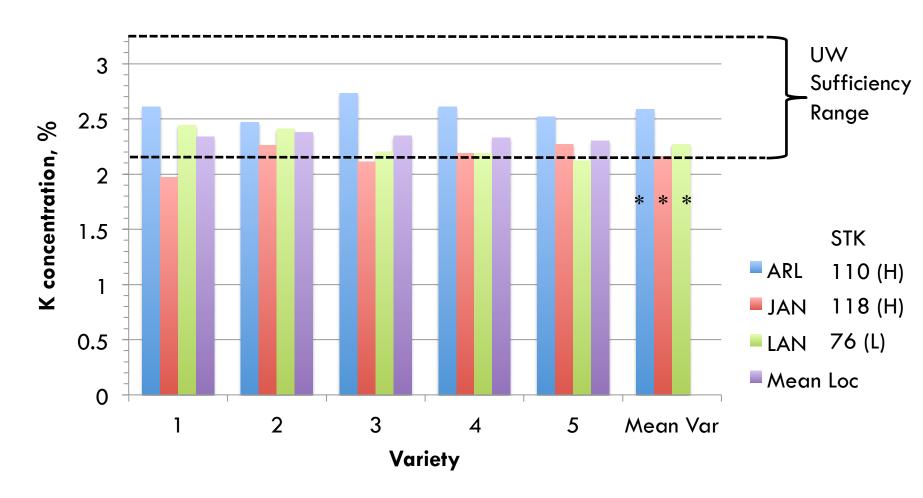
Photo credits: Todd Andraski

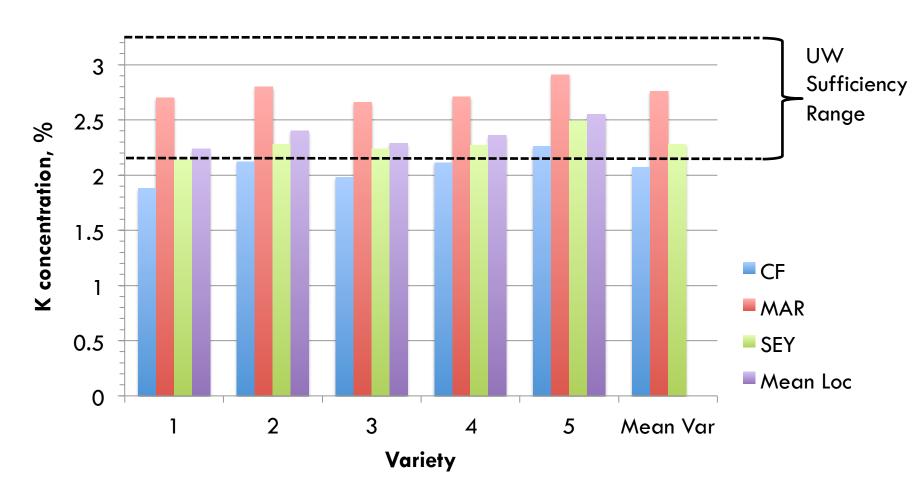

Effect of soybean variety on yield

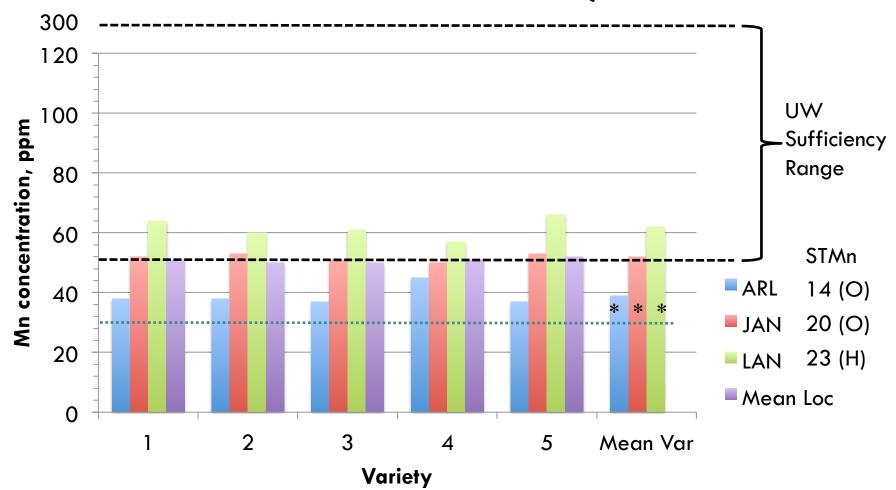
Variety	Yield, bu/a								
	ARL	JAN	LAN	Mean		FdL	GAL	HAN	Mean
1	<i>7</i> 1	90	75	78 a		67	52	78	66 b
2	67	81	77	75 ab		66	62	79	69 ab
3	66	88	74	76 ab		68	61	86	72 a
4	58	84	69	70 c		65	66	83	71 a
5	72	76	69	70 bc		66	54	77	65 b
Mean	67 c	83 a	73 b			67 b	59 c	81 a	
	CF	MAR	SEY	Mean		SPO			
1	58	68	61	62 ab		51			
2	54	63	55	58 c		44			
3	61	65	63	63 a		45			
4	54	63	60	59 bc		50			
5	50	60	52	54 d		50			
Mean	55 b	64 a	58 b						

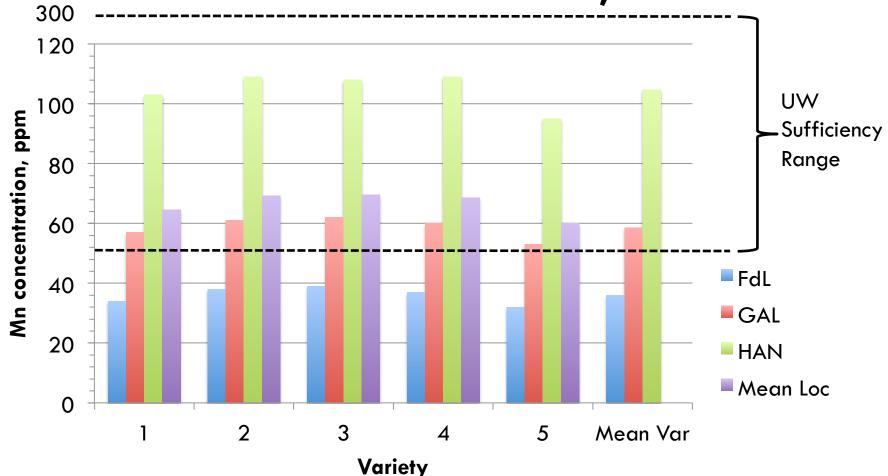

Effect of variety & location on soybean tissue P concentrations at R1, Southern WI

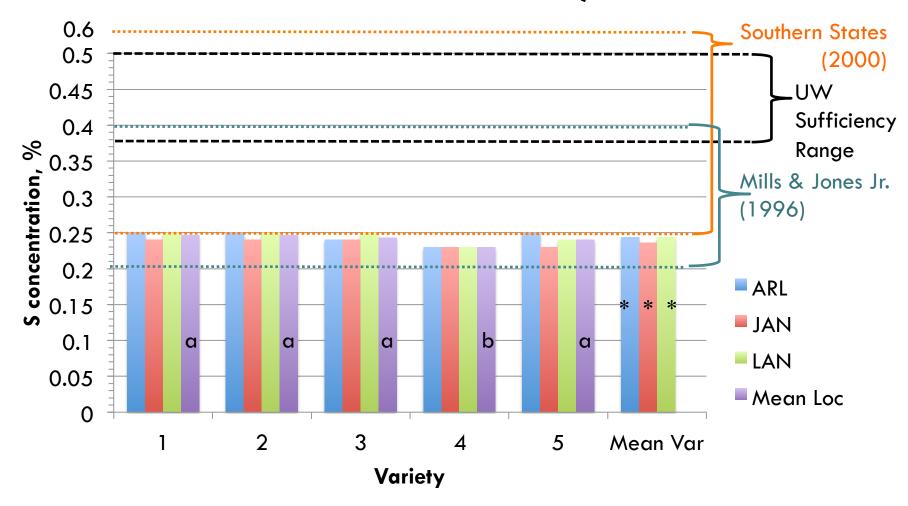

Effect of variety & location on soybean tissue P concentrations at R3, Southern WI


Effect of variety & location on soybean tissue P concentrations at R1, Central WI


Effect of variety & location on soybean tissue K concentrations at R1, Southern WI


Effect of variety & location on soybean tissue K concentrations at R3, Southern WI


Effect of variety & location on soybean tissue K concentrations at R1, N. Central WI


Effect of variety & location on soybean tissue Mn concentrations at R1, Southern WI

Effect of variety & location on soybean tissue Mn concentrations at R1, Central WI

Effect of variety & location on soybean tissue S concentrations at R1, Southern WI

Significant (p<0.05) differences in nutrient concentrations between R1& R3 at each location averaged across all varieties

Location	N	P	K	Mn	S
ARL	_	^	^	^	V
JAN	Ψ	V	_	Ψ	V
LAN	^	^	_	V	V

Nutrient concentration at R3 significantly greater than R1 Nutrient concentration at R3 significantly less than R1

Conclusions

- Using PA to assess the nutrient sufficiency status for crops where norms for one or more nutrients are well identified works & is helpful when soil test correlations are poor for that nutrient
 - Alfalfa and S
- Using PA as part of a broad survey to assess crop management practices can be useful
 - Alfalfa and K
 - Care needs to be taken not to extrapolate beyond the dataset
 - Inadequate field history and/or lack of testing yield response to applied nutrient(s)

Conclusions cont.

- Soybean variety may and location often affect tissue nutrient concentrations when sampled at either the R1 or R3 stage
- Tissue nutrient concentrations at a location are affected by time of sampling
- Choice of sufficiency ranges will affect interpretation
 - There are a number of choices available which one is correct?
 - Much of the data is quite dated
 - It is difficult to have confidence without fertilizer response data
- Caution should be used when taking single plant samples from a field
 - Most states suggest comparing samples taken from good vs bad areas
 - Include soil samples and other information such as sensor readings
- There is a need for more research with modern varieties and production practices

What's ahead

- Most states in the upper Midwest have research work ongoing
- Field research and survey work will continue in Wisconsin for multiple crops and locations
- Interest in using tissue testing will likely continue to grow, especially for high value crops
- Remember it is just one more tool in the toolbox