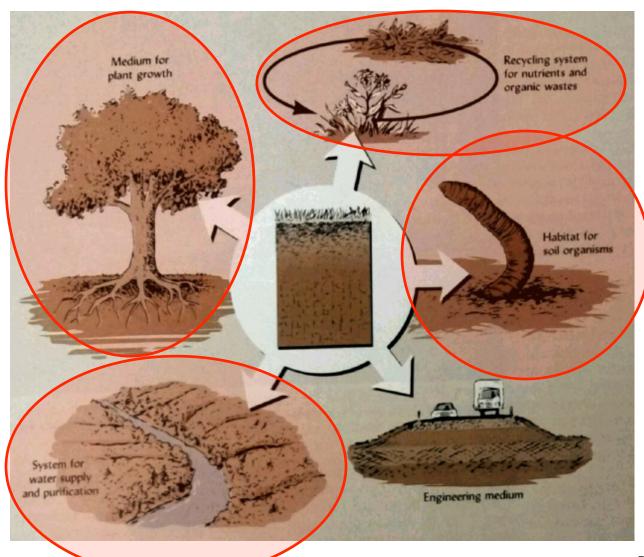
Impact of Soil Health on Crop Production

Francisco J. Arriaga
Soil Science Specialist
Dept. of Soil Science & UW-Extension


What is Soil Health?

 "the capacity of a specific kind of soil to <u>function</u>, within natural or managed ecosystem boundaries, to sustain plant and animal <u>productivity</u>, maintain or enhance water and air <u>quality</u>, and support human health and habitation."

Functions of Soil

source: Brady & Weil, 1996

<u>Extension</u>

Soil Functions

- Medium for plant growth
- Recycle/store nutrients & organic materials
- Habitat for soil organisms
- Water storage & purification

<u>Indicators</u>

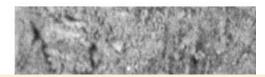
- Texture
- Structure
- Infiltration & bulk density
- Water holding capacity
- Aggregate stability
- Soil organic matter
- pH
- Extractable N,P, & K
- Microbial biomass C & N
- Potentially mineralizable N
- Soil respiration

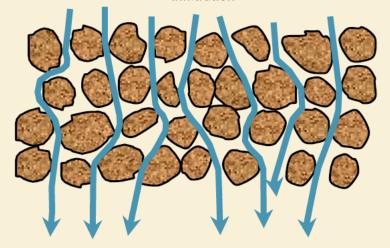
Soil Properties Affected by SOM

- Physical
 - infiltration
 - water retention
 - hydraulic conductivity
 - bulk density

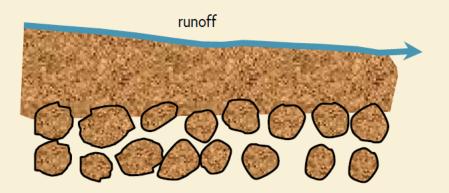
- Chemical
 - CEC
 - nutrient availability
 - buffering capacity

		_				
		Yield range	Soil organic matter content (%)			
soil surface	Crop	per acre	< 2.0	2.0-9.9	10.0-20.0	> 20.0
Profession of the second			lb N/a to apply²			
	Alfalfa, seeding	1.0-2.5 ton	30	0	0	0
	Alfalfa, established	2.6-9.5 ton	0	0	0	0
	Apple, establishment ^b	_	2	2	2	2
sand grain	Asparagus	2,000-4,000 lb	80	60	40	20
	Barley ^c	25-100 bu	70	50	30	15
	Bean, dry (kidney, navy)	10-40 cwt	40	30	20	10
12 100 Line (02 1808)	Bean, lima	2,000-5,000 lb	60	40	20	10
	Bean, snap	1.5-6.5 ton	60	40	20	0
	Beet, table	5-20 ton	120	100	80	30
	Blueberry, establishment ^d	_	30	30	30	30
	Brassica, forage	2-3 ton	120	100	80	40
	Broccoli	4–6 ton	100	80	60	25
	Brussels sprouts	4-6 ton	100	80	60	25
	Buckwheat	1,200-2,000 lb	50	30	20	0
1 250000000	Cabbage	8-30 ton	180	140	100	40
macropore micropores	Canola	30–50 bu	80	60	40	20

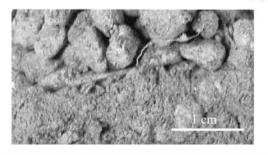


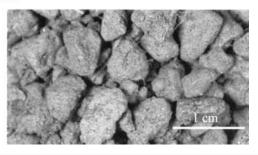

Aggregate size

<2 mm



infiltration

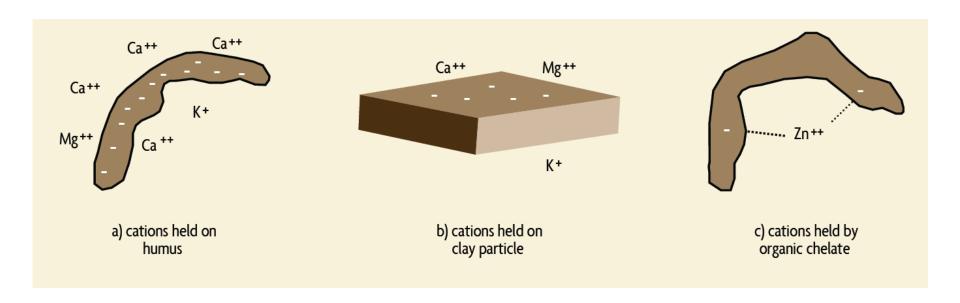

a) aggregated soil



b) soil seals and crusts after aggregates break down

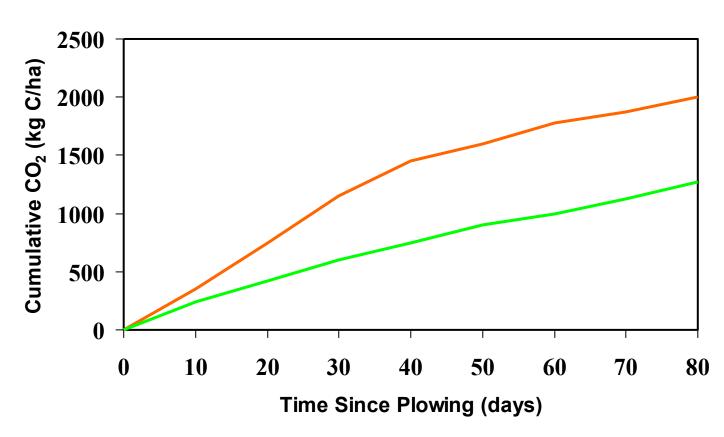
Source: Magdoff and van Es, 2009

4-6 mm

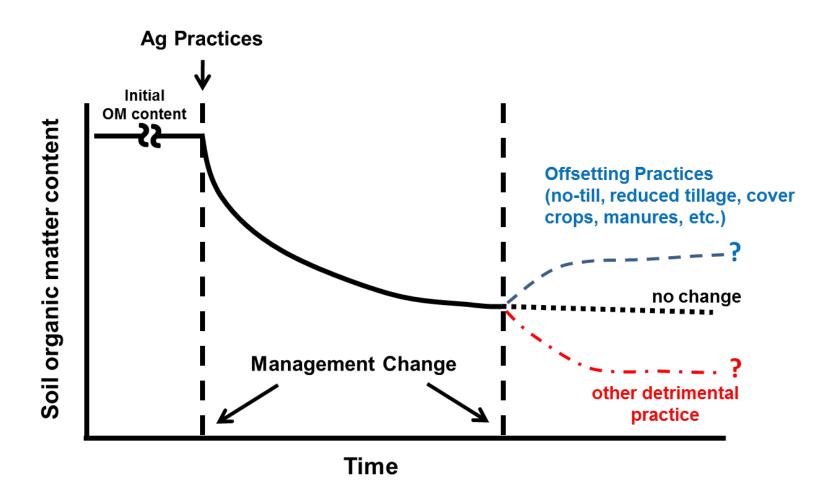


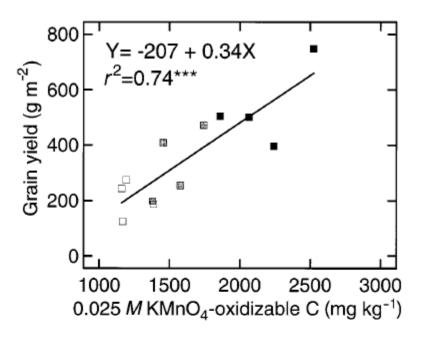
(Lado, Paz and Ben-Hur, 2004)

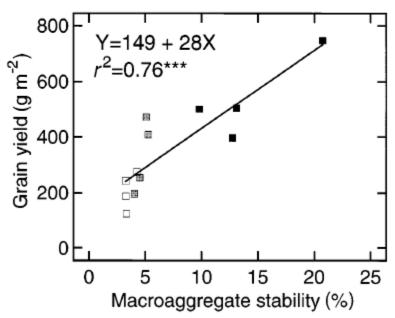
Nutrient Retention


Source: Magdoff and van Es, 2009

How is Soil Organic Matter Lost?




Farming for Soil Organic Matter



Corn Yield

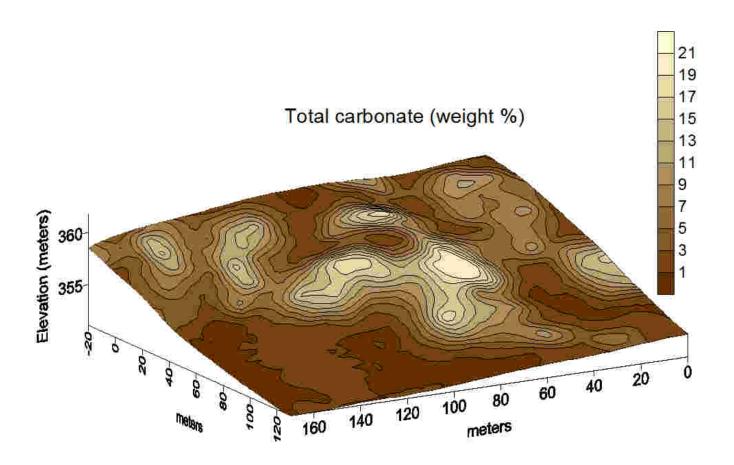
Tillage:

- conventional
- reduced
- no-till

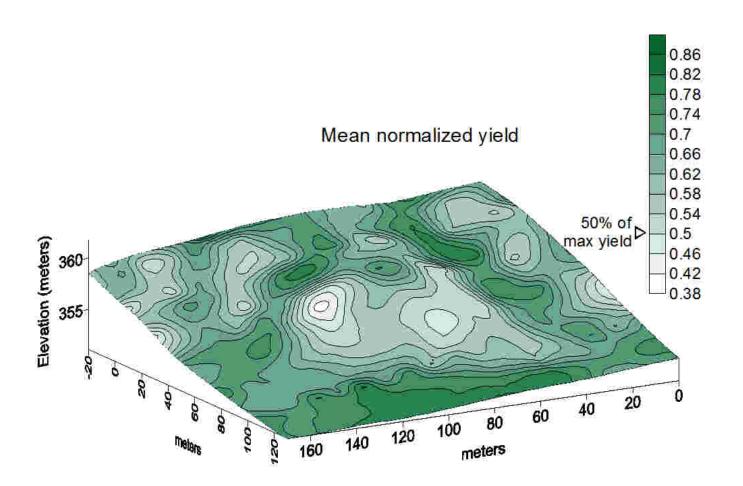
(Stine & Weil, 2002)

Why Does Soil Health Matters?

Eroded field example:



source: S. Papiernik, 2013


Why Does Soil Health Matters?

Why Does Soil Health Matters?

How Can the Health of a Soil be Improved?

Measurement	Process Affected		
Organic matter	Nutrient cycling, pesticide and water retention, soil structure		
Infiltration	Runoff and leaching potential, plant water use efficiency, erosion potential		
Aggregation	Soil structure, erosion resistance, crop emergence, infiltration		
рН	Nutrient availability, pesticide absorption and mobility		
Microbial biomass	Biological activity, nutrient cycling, capacity to degrade pesticides		
Forms of N	Availability to plants, leaching potential, mineralization and immobilization rates		
Bulk density	Root penetration, water/air filled pores, biological activity		
Topsoil depth	Rooting volume, water and nutrient availability		
Available nutrients	Capacity to support plant growth, environmental hazard		

It is About Management!

Final Thoughts

Soil health is about managing SOM and aggregates...

Old woods

Kewaunee Bhorizon

Corn silage 2 Vears

Vears

Corn (2013)

