
Irrigation Management Options

Alvin J. Bussan, Mike Drilias, Bill Schmitt, and Mack Naber UW-Madison, Horticulture Department

Global Water Use

Water Demand of Different Products

Product	Unit	Equivalent water in cubic metres
Bovine, cattle	head	4,000
Sheeps and goats	head	500
Meat bovine fresh	kilogram	15
Meat sheep fresh	kilogram	10
Meat poultry fresh	kilogram	6
Cereals	kilogram	1.5
Citrus fruit	kilogram	1
Palm oil	kilogram	2
Pulses, roots and tubers	kilogram	1

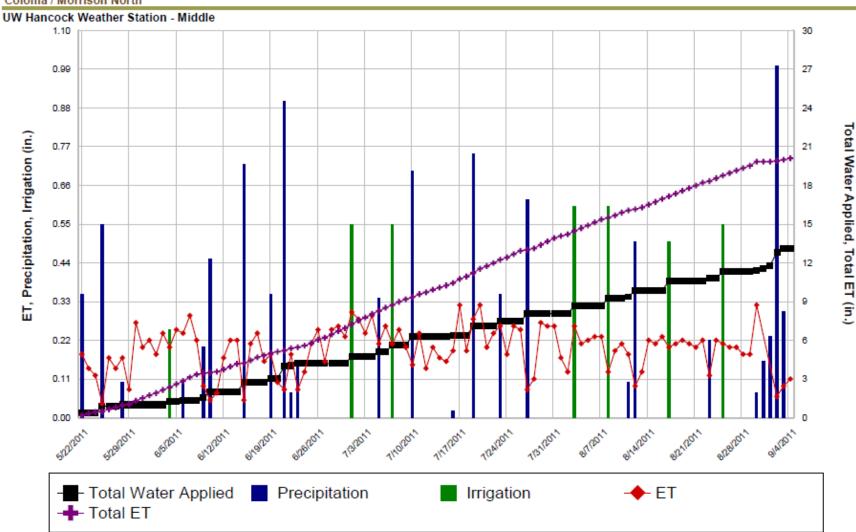
United Nations

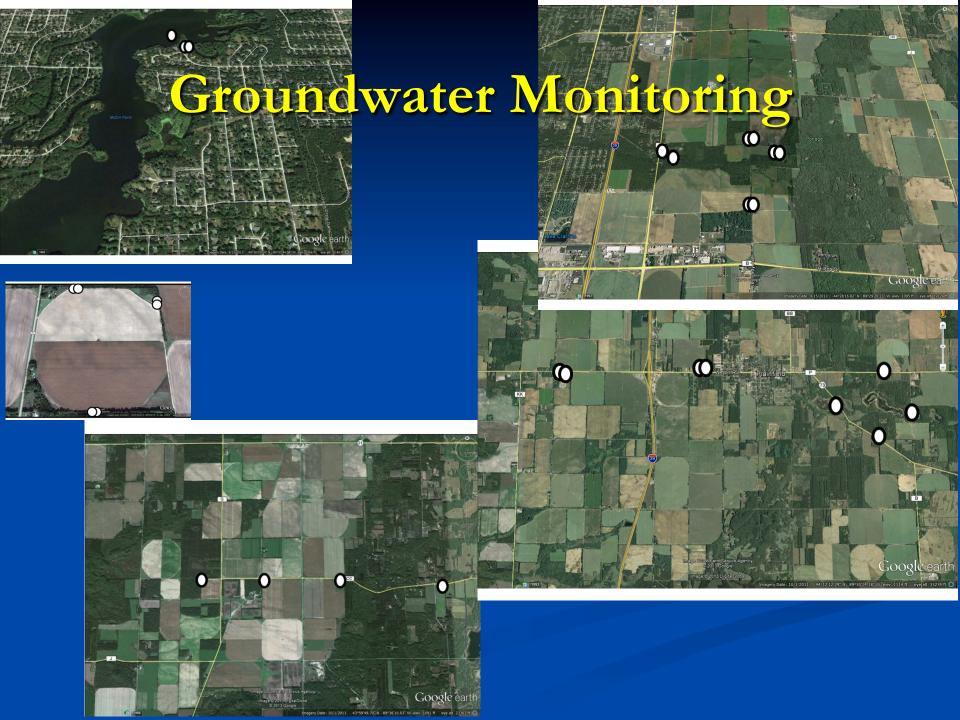
Today's Presentation

Wisconsin Irrigation Management

Integrated solutions toward water management

Irrigation Management


- Water balance method
 - http://wisp.cals.wisc.edu/
 - Crop water use
 - Precipitation and irrigation
- Soil water holding capacity
 - Soil texture
 - Rooting depth
- Soil moisture is reservoir
 - Allowable depletion level


Allowable Depletion Level

	Crop Effective Rooting Depth			
		Snap	Soybean	Corn,
	Potato	Bean/Pea	Sw Corn	alfalfa
	12"	24"	30"	36"
Soil type		AD (ii	nches)	
Plainfield loamy				
sand	0.7	1.1	1.4	1.6
Billet sandy loam	0.9	1.7	2.1	2.4
Plano silt loam	1.2	2.4	3	3.4
Antigo silt loam	1.3	1.8	2.3	2.4

Coloma Farms Inc. Water Use Details (by location) Soybean Water 5/22/2011 through 9/4/2011

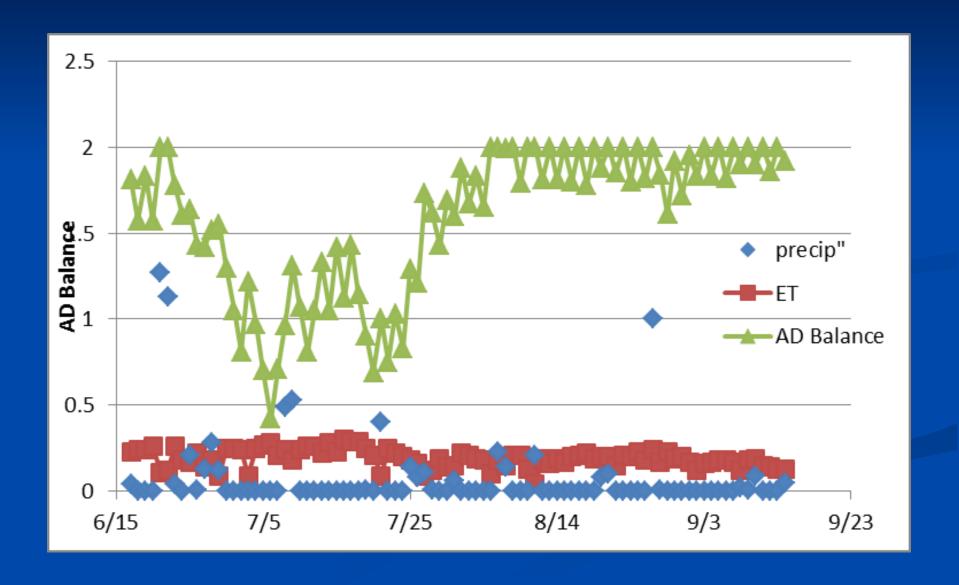
Coloma / Morrison North

Managing Water Resources

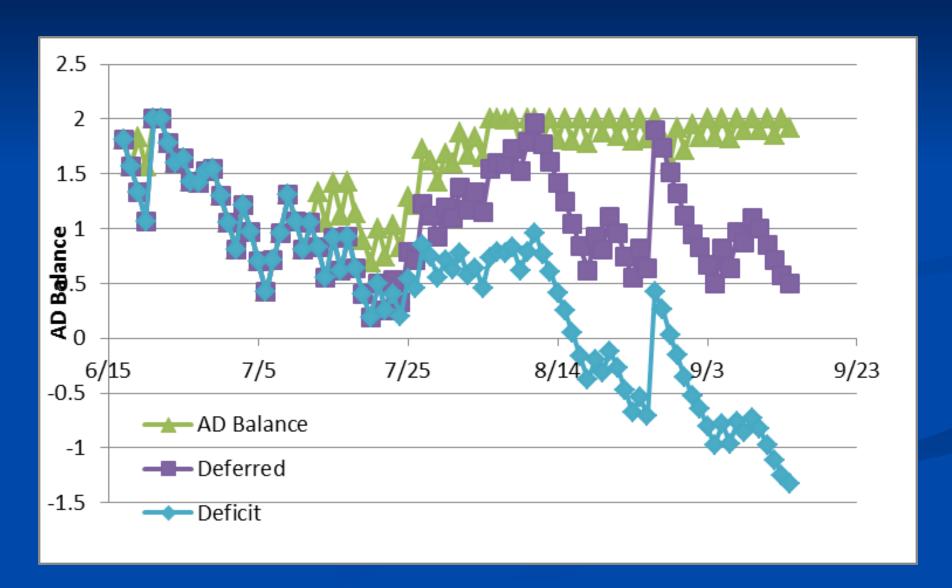
- Achieve economic, social, and environmental goals
- Technological Innovation
 - Irrigation efficiency
- Crop Management
 - Deferred or deficit irrigation
- Land Management
 - Landscape scale water management

Water Use By Crop

	Values			
Row Labels	Average of Rain	Average of Irrigation	Average of ET	Average of Adjusted ET
Alfalfa	11.30	3.20	14.90	14.90
Corn	12.41	4.69	15.51	13.46
Mix	13.09	4.46	15.30	13.52
New Land	12.52	4.50	15.48	12.72
Peas	8.60	4.57	13.39	11.46
Potato	16.42	6.78	14.82	11.60
Soybean	12.04	4.41	15.00	13.48
Sweet Corn	11.19	4.33	13.43	11.13
Grand Total	14.06	5.57	14.84	12.87


Deferred Irrigation

- Relying on soil moisture to maximize use of precipitation
 - Implement during less sensitive stages of growth


Deficit Irrigation

- Irrigate at less than ET
 - Adjusted ET > irrigation + precipitation excess

AD Balance

Irrigation Treatments

Deferred Irrigation

- Relying on soil moisture to maximize use of precipitation
 - Implement during less sensitive stages of growth
- Soybean example
 - 77 bu at full irrigation
 - 76 bu at deferred irrigation
- 2.5" less irrigation
 - 67,855 gallons/acre
 - 1.03 million gallons/pivot

Deficit Irrigation

- Irrigate at less than ET
 - Adjusted ET > irrigation + precipitation excess
- Soybeans
 - 13 bu/a yield reduction
- Snap Beans
 - 2.5-3.2 ton/a yield reduction
- Sweet Corn
 - No yield response
 - Was this deficit irrigation

Soybean Yield Response

	Yield
Variety	Difference
AG1931	11.6
AG2431	10.7
CH2105	15.8
P92Y11	18.1
P92Y32	9.9
P92Y51	16.5

Field Corn Irrigation

- ET 18.5"
- Deferred Irrigation
 - Conserve 1.5" of irrigation
 - 40,713 gallons/acre
 - 6.2 million gallons/pivot
- Irrigate at less than ET
 - Adjusted ET > irrigation + precipitation excess
- Field corn
 - 9 bu/a yield reduction

Field Corn Response

			Yie	eld
Brand	Hybrid	water opt	Full	Defecit
NuTech/G2 Genetics	5Z-200	X	199	213
DuPont Pioneer	P9690HR	X	213	217
NuTech	5N-9802		198	213
DuPont Pioneer	P9917AMX		215	228
NuTech/G2 Genetics	5X-698	X	201	200
NK Brand5N-9802	N45P-3011A	X	214	217
Unity Seeds	3190-3000GT	X	220	221
NuTech/G2 Genetics	5H-707		224	236
NuTech/G2 Genetics	5F-008	X	231	242
NuTech/G2 Genetics	5Z-709	X	243	255
Hughes	2987GT3	X	229	233
Power Plus	2V56AMX	X	221	238
LSD			22	32
All hybrids corn borer, liberty link, roundup ready				

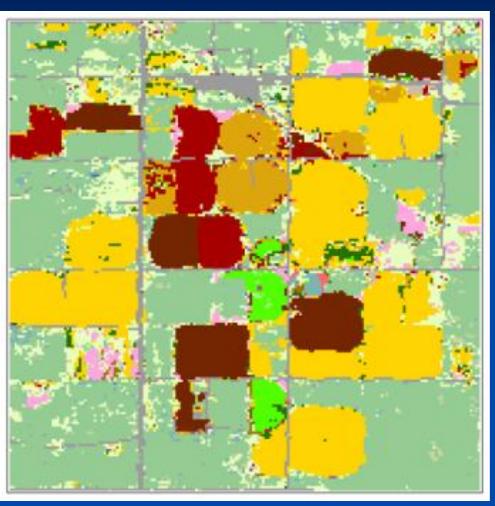
Lauer, Kohn, Diallo 2013

Sweet Corn Response

		Total		
Treatment		yield		
Variety & Irı	rigation	ton/acre	ears/acre	Lb/ear
DM 21-84		9.63	25832.3	0.75
SV 1365		9.83	22700.6	0.87
SV 1514 SK		12.90	26781.3	0.97
GSS 1453		9.53	23383.9	0.82
GSS 1477		10.47	25860.8	0.82
Protege		9.45	24873.8	0.76
Rocker		8.65	21485.8	0.81
GH 4927		9.25	26316.3	0.70
Overland		9.35	22520.2	0.83
Overland + SO		9.60	24171.5	0.80
LSD (P=0.05)		1.25	NS	0.06

Sweet Corn Response

	Total		
Treatment	yield		
Variety & Irrigation	ton/acre	ears/acre	Lb/ear
Normal			
Irrigation	9.54	23653.4	0.81
Deficit			
Irrigation	10.19	25131.9	0.82
LSD (P=0.05)	NS	1326.0	NS


Sweet Corn Hybrid Response

		Total yield		
Hybrid		(ton/acre)		
		Deferred		Deficit
DM 21-84		9.23		10.0
SV 1365		9.87		9.8
SV 1514 SK		13.47		12.3
GSS 1453		9.00		10.1
GSS 1477		9.93		11.0
Protege		8.83		10.1
Rocker		8.13		9.2
GH 4927		8.67		9.8
Overland		9.00		9.7
	LSD	NS		NS

Green Bean

Treatment		Total yield	Size 4 & 5
Variety & Irrigation		(ton/acre)	0/0
DMC 04-88	Normal Irrigation	8.05	77.3
DMC 04-88	Deficit Irrigation	5.45	80.2
DMC 04-95	Normal Irrigation	8.18	84.2
DMC 04-95	Deficit Irrigation	6.42	80.6
Huntington	Normal Irrigation	7.41	71.9
Huntington	Deficit Irrigation	5.70	83.0
Caprice	Normal Irrigation	4.52	65.2
Caprice	Deficit Irrigation	4.05	70.6
Masai	Normal Irrigation	3.60	0.0
Masai	Deficit Irrigation	4.13	0.0
BA 0999	Normal Irrigation	5.95	91.4
BA 0999	Deficit Irrigation	4.49	92.0
BA 1001	Normal Irrigation	6.97	76.5
BA 1001	Deficit Irrigation	6.02	75.3
SV 1098 GV	Normal Irrigation	5.95	87.2
SV 1098 GV	Deficit Irrigation	4.84	86.1
	LSD (P=0.05)	1.21	5.0

Land Management

Landscape is variable

Manage land to optimize water use

Identify where water withdrawals have acceptable impacts

Summary

Design system to meet capacity

Understand soils and relationship to crop water use

- Design farm within the landscape
 - maximize value
 - benefit the community
 - minimize impacts

Thanks

- Funding support
 - MWFPA
 - WPVGA
 - Wisconsin Soybean Marketing Board
 - Wisconsin Specialty Crop Block Grant Program
 - USDA NRCS Conservation Innovation Gratn