

Upper Midwest specialty crops

- Diverse
- Valuable
- Dispersed

Synthetic auxin resistance in corn and soy

- Synthetic auxin herbicide resistance in corn and soy may increase weed control spectrum, particularly if glyphosate resistant weeds are present
- Occasional observations of alleged offtarget synthetic auxin herbicides in specialty crops, but data to determine potential effect on crop yield and quality is often lacking

Materials and Methods

'Russet Burbank' potato:

- Dicamba rates: 1.4, 4.2 and 7.0 g ae/ha
- Two application timings: 25 cm potato plants, at tuber initiation

'Hercules' snap bean:

- Dicamba or 2,4-D rates: 1.4, 4.2 and 7.0 g ae/ha
- Glyphosate rates: 7.0 g ae/ha
- One application timing: 1 to 2 trifoliate snap beans

Materials and Methods

- Conventional production practices, including PRE herbicides
- Conventional 2,4-D amine and dicamba formulations
- Four-row plots 6.1 m in length, with surrounding crop buffer
- Four replications, two years

Snap beans: year 1

Treatment	Rate		Injury		Yield
	g ae/ha	%, 7 DAT	%, 18 DAT	%, 28 DAT	mt/ha
Non-treated		0 f	3 c	0 d	6.0 a
dicamba	1.4	19 c	43 b	11 b	1.1 d
dicamba	4.2	26 b	40 b	14 b	0.9 d
dicamba	7.0	45 a	53 a	24 a	0.5 d
2,4-D	1.4	4 ef	3 c	1 cd	5.8 a
2,4-D	4.2	6 e	9 c	1 cd	4.1 b
2,4-D	7.0	11 d	10 c	1 cd	2.8 c
glyphosate	7.0	5 e	3 c	4 c	5.5 a

Snap beans: year 2

Treatment	Rate		Injury		Yield
	g ae/ha	%, 7 DAT	%, 14 DAT	%, 22 DAT	mt/ha
Non-treated		0 d	0 d	0 d	4.3 a
dicamba	1.4	6 c	38 b	28 b	0.7 b
dicamba	4.2	10 ab	48 a	40 a	0.1 b
dicamba	7.0	11 a	43 ab	29 b	0.1 b
2,4-D	1.4	8 bc	6 cd	5 cd	4.7 a
2,4-D	4.2	8 bc	6 cd	5 cd	4.2 a
2,4-D	7.0	8 bc	11 c	10 c	4.1 a
glyphosate	7.0	5 c	9 cd	6 cd	4.6 a

dicamba, 7.0 g ae/ha

2,4-D, 1.4 g ae/ha

glyphosate, 7.0 g ae/ha

Potatoes: year 1

Treatment	Rate	Timing	% In	jury	B's	Culls	Total yield
	g ae/ha		30/16 DAT	38/22 DAT		mt/ha	
Non-treated			0 c	0 c	6.6b	1.5ab	43.5
dicamba	1.4	early	1 c	0 c	8.7b	1.2ab	41.8
dicamba	4.2	early	10 b	6 bc	14.4a	0.9ab	50.0
dicamba	7.0	early	19 a	14 ab	10.1ab	1.2ab	43.2
dicamba	1.4	late	5 bc	14 ab	6.4b	0.8ab	43.8
dicamba	4.2	late	8 b	15 ab	10.4ab	0.6b	47.0
dicamba	7.0	late	10 b	23 a	7.7b	1.9a	41.0

Potatoes: year 2

Treatment	Rate	Timing	% In	jury	B's	Culls	Total yield
	g ae/ha		31/15 DAT	38/22 DAT		mt/ha	à
Non-treated			1 d	1 b	8.6	6.8 b	83.9 a
dicamba	1.4	early	4 cd	1 b	9.0	5.2 b	77.7 b
dicamba	4.2	early	6 c	2 b	8.1	6.6 b	71.6 c
dicamba	7.0	early	15 b	8 a	6.8	13.2 a	79.9 ab
dicamba	1.4	late	6 c	5 ab	9.1	6.1 b	74.8 bc
dicamba	4.2	late	13 b	7 a	11.0	5.1 b	78.4 ab
dicamba	7.0	late	20 a	9 a	9.5	6.7 b	84.3 a

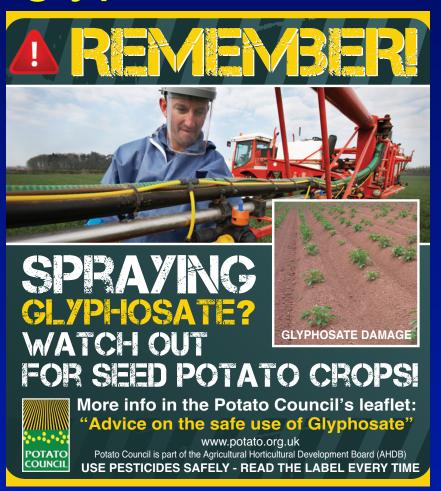
dicamba, early, 1.4 g ae/ha

dicamba, early, 7.0 g ae/ha

dicamba, late, 7.0 g ae/ha

Does injury relate to yield?

	Pearson correlation coefficients				
	First estimation timing	Second estimation timing	Third estimation timing		
Year 1					
Snap bean total yield	-0.84	-0.90	-0.81		
Potato total yield	0.23	-0.01	-0.05		
Year 2					
Snap bean total yield	-0.43	-0.88	-0.82		
Potato total yield	-0.22	0.19	0.04		


Summary:

 Observations of visible injury aren't a good indicator of yield or quality risk

 Regardless of visible injury, harvested crop is subject to pesticide residue limits

 Stewardship programs must also consider weed resistance, not just off-target risks

Seed potatoes: glyphosate and other herbicides

- Evaluating herbicides used near potatoes
 - Several anecdotal observations of potential issues, but hard to confirm
 - Somewhat sporadic reports in the literature with differing results
 - Newer active ingredients that have not been evaluated

Tank-mix "cocktails" complicate matters...

Materials and Methods

- 'Russet Burbank' potatoes grown in Hancock, WI in 2013
 - Tank-contamination herbicide application at tuber initiation
 - Injury and yield evaluated
 - Seed stored in winter 2013
- Seed sent to winter grow-out test in HI
- Seed planted in Hancock in 2014
 - Injury and yield evaluated

Materials and Methods

Evaluated at 1% of typical use rate, with appropriate adjuvants:

- 2,4-D
- Dicamba
- Aminopyralid
- Glyphosate
 - Also at 2 and 4%

- Fluthiacet-ethyl
- Flumiclorac
- Cloransulam
- Thifensulfuron
- Tribenuron
- Metsulfuron
- Mesotrione
- Tembotrione
- Topramezone

Mesotrione, 5 DAT, 10%

2013 Hancock 2013 Hawaii

Dicamba, 28 DAT, 16%

2013 Hancock

2013 Hawaii

Aminopyralid, 28 DAT, 18%

2013 Hancock

2013 Hawaii

2013 Potato Yield:

- No differences in tuber yield
- No differences in tuber quality

2013 Hancock 2013 Hawaii

2013 Hancock 2013 Hawaii

2013 Hancock 2013 Hawaii

2014 Injury:

- Transient
- Subtle
- Affecting individual plants
- Statistically similar, but generally greatest with herbicides that also caused in injury in 2013
 - Addition: thifensulfuron

2013 Hancock 2013 Hawaii

Aminopyralid, year after exposure

2013 Hancock 2013 Hawaii

2014 Yield:

- Total yield, B's and culls did not differ among treatments
- 10-13 ounce tubers were reduced by dicamba, cloransulam and tribenuron

2013 Hancock 2013 Hawaii

Summary:

- Injury in the year of exposure may not affect yield or quality in that year, but may affect growth (aminopyralid) and yield grade distribution in the following year (dicamba)
- Some herbicides may not cause much injury in exposure year, but may affect growth (thifensulfuron) or yield distribution (tribenuron) in the following year
- The winter grow-out procedures may mask these affects