## Low-disturbance Manure Application Methods in a Corn Silage-Rye Cover Crop System

Bill Jokela, Jason Cavadini, and Mike Bertram USDA-ARS, Marshfield, WI, and Univ. WI Agric. Research Station, Marshfield and Arlington, WI

Technical Support:

Jess Sherman, Tony Sternweis, Ashley Braun, and Matt Volenec

Partial Financial Support:

USDA-NIFA and WI Fertilizer Research Program

Wisconsin Crop Management Conference Madison, WI, Jan. 14, 2015







### Situation

- Manure a good source of nutrients for crops
- Large ammonia-N (NH<sub>3</sub>-N) losses from surface-applied manure reduce N available to crop and contribute to environmental problems
- Quick tillage or injection minimizes NH<sub>3</sub>-N losses, but reduces crop residue cover, which may increase erosion potential.

### Objective

 Evaluate methods for applying liquid manure that minimize NH<sub>3</sub>-N and nutrient runoff losses, conserve N for crop, while maintaining crop residue cover.







### Field Site

- Marshfield Ag Research Station, Marshfield,
   WI (central WI)
- Withee silt loam (Aquic Glossudalf)
  - Somewhat poorly drained, 0-2% slope





## Manure and Fertilizer Application

- Late fall manure application (late Oct-early Nov) into corn silage stubble-rye cover crop
- Target application rate 8000 gal/acre (aim 80% of crop N need)
  - Supplied 190 total N, 90 NH<sub>4</sub>-N, 80 P<sub>2</sub>O<sub>5</sub>, 200 K<sub>2</sub>O lb/acre/yr (average; nutrient content and rate variable)
  - Fertilizer N: 0, 60, 120, 180 lb N/acre pre-plant (no manure)
  - Starter (9-11-30-6S) applied to all plots



Broadcast - Surface



Broadcast – Disk Incorporation

Low-disturbance sweep injection (DSI/Dietrich)



# Low-disturbance Manure Application Methods



Strip-till/sweep injection (DSI with paired disks – "Clozr")

## Coulter injection (Yetter Avenger)







## Aerator-band applicator











All plots except strip-till injection field cultivated in spring



Planting field cultivated plot



Planting strip-till injection plot

#### Measurements

- Soil sampling
  - Routine, PSNT, deep NO<sub>3</sub>
- Plant sampling (N, P, K...)
  - Early growth, earleaf at silk
- Surface residue cover
  - Photos and image analysis
- Ammonia volatilization
  - Dynamic chamber technique
- Runoff (P, N, sediment)
  - Rainfall simulator
- Silage yields and nutrient uptake
  - Silage wagon with weigh cells

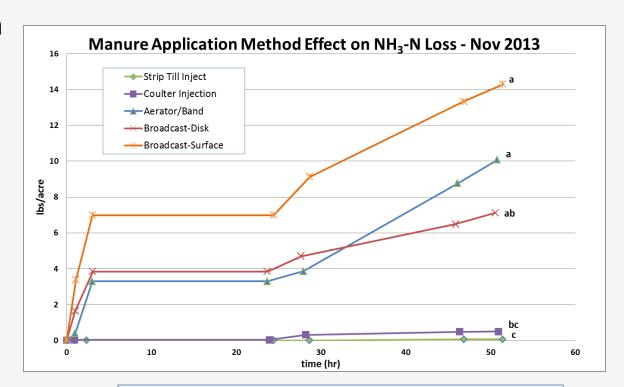












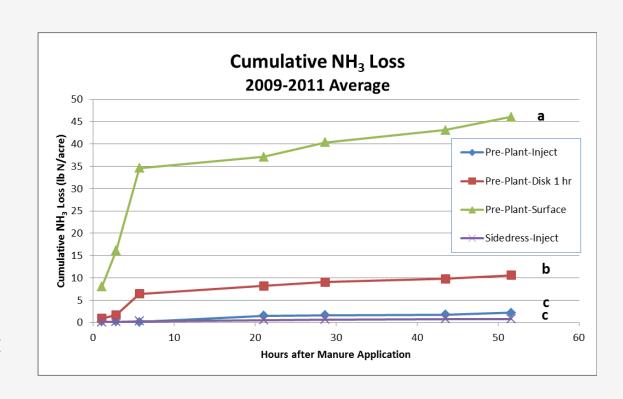

## How does manure application method affect...?

- Manure ammonia-N volatilization/loss
- Manure N availability to crop
  - Pre-sidedress Soil Nitrate Test (PSNT)
  - Earleaf N content at silking
  - Silage N content and uptake
- Silage yield
- Surface residue cover
- Sediment and phosphorus loss in runoff

## Ammonia Emission November 2013

- Greatest loss from broadcast-surface
- Least from injection (strip-till, coulter)
- Broadcast-disk and aerator-band intermediate
- Low NH<sub>3</sub> losses due to low temperatures and rain, but probably more in following days




**Early November** 

Low temperatures: 25 to 43 F

Rain: 0.6 inch following manure application

## Ammonia Emission Manure N Timing Study, Marshfield, 2009-2011

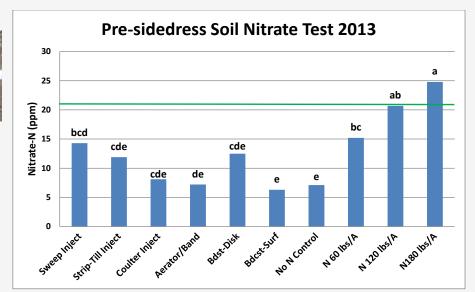
- Greatest loss from pre-plant-surface
- Large reduction from disk incorporation
- Least loss from injection
- Relative losses similar to current study, but different pattern and greater NH<sub>3</sub> emissions
  - Higher temperatures
  - Little/no rain

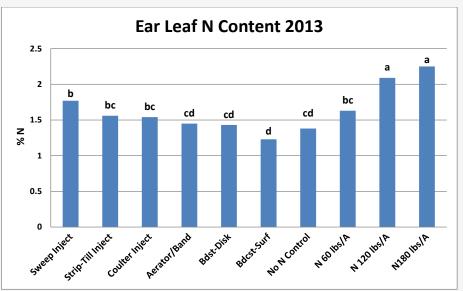


Mid-late May 2009-2011

## Indicators of Crop N Availability

2013


## Pre-sidedress Soil Nitrate Test (PSNT)

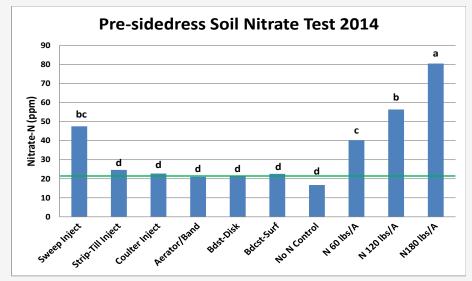

- Most treatments < 
   <ul>
   threshold for adequate N
- Manure
  - Injection and disk highest
  - Surface lowest = Control
- Fertilizer N (spring) > Manure (fall)

## Earleaf N Content at Silking

 Similar trends to PSNT, but less pronounced








## Indicators of Crop N Availability

2014

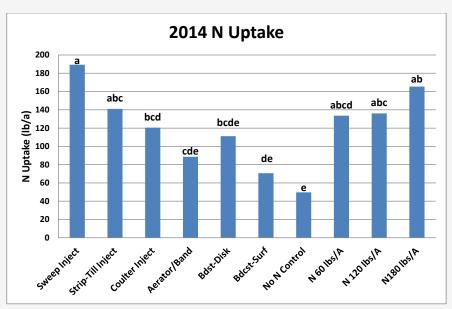
## Pre-sidedress Soil Nitrate Test (PSNT)

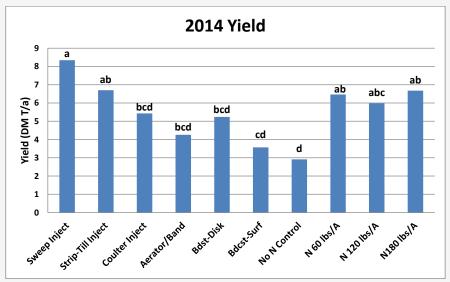
- A CONTRACTOR OF THE PARTY OF TH
- All but No N Control
   > threshold for
   adequate N
- Fertilizer N and Sweep Injection highest



## Earleaf N Content at Silking

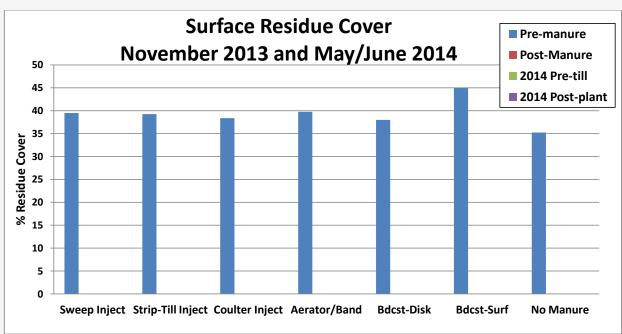
Similar trends to PSNT




## Silage Yield and N Uptake




- Injected and disk incorporated manure
   = Fertilizer N
- Broadcast-surface manure and No N Control lowest (not significantly different)



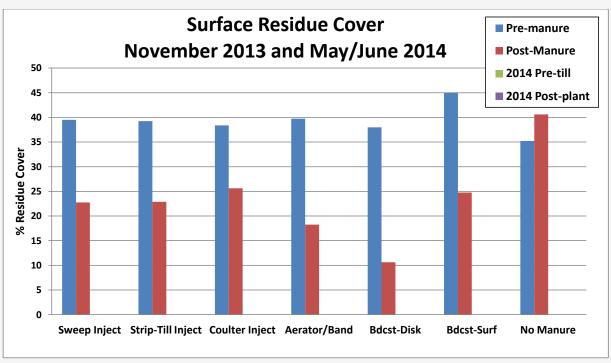


## Surface Residue Cover Pre-Manure, November 2013





- Residue = corn stubble, rye, weeds (no manure)
- Minimal rye growth in fall






### Surface Residue Cover

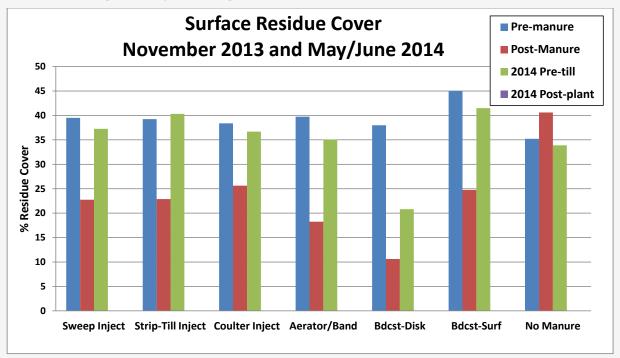
### Post-Manure, November 2013

 Greatest residue decrease from broadcast-disk, least from injection of manure










Strip-till Inject

### Surface Residue Cover

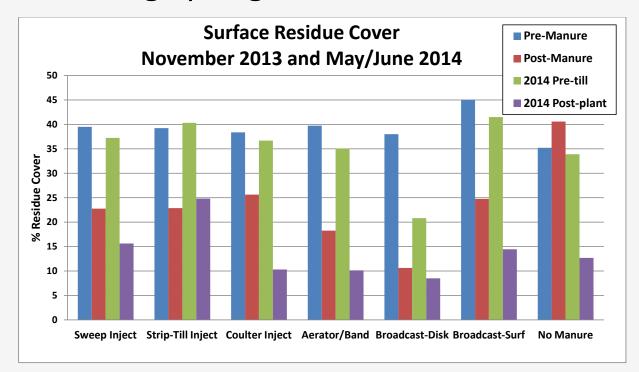
### Pre-tillage Spring 2014

- Greatest residue decrease from broadcast-disk, least from injection of manure
- Spring residue cover increased to pre-manure levels, except disk










Sweep Inject

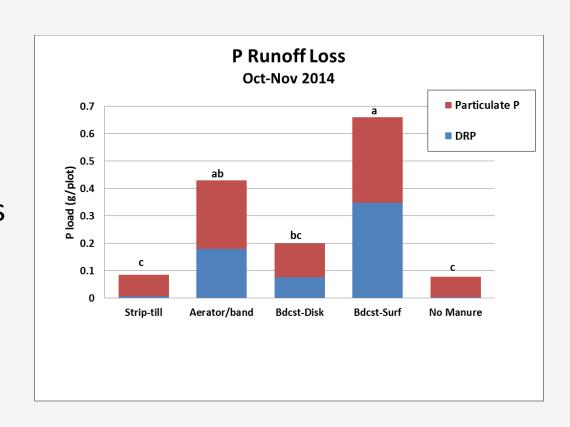
## Surface Residue Cover

### Post-Planting Spring 2014

- Greatest residue decrease from broadcast-disk, least from injection of manure
- Spring residue cover increased to premanure levels except disk
- Large residue decrease from spring tillage, except strip-till injection






Spring field cultivated



Strip-till Inject

## **Nutrient Runoff Losses**

- No significant effect on runoff quantity
- No significant effect on sediment loss
- Big effect on P losses
  - Total P
  - Dissolved P (DRP)
- Decreased P losses vs. Bdcst-Surface
  - Aerator-Band 35%
  - Bdcst-Disk 70%
  - Strip-till Inject 90% =No Manure



## **Preliminary Conclusions**

- Low-disturbance manure application methods:
  - Reduced ammonia loss (especially injection, >90%) compared to broadcast surface application
  - Increased manure N availability to the crop compared to surface application
    - PSNT, ear leaf N content, silage N content
  - Maintained residue cover better than disk incorporation of manure
  - Reduced runoff P losses (35-90%) compared to surface application
- In summary, low-disturbance methods provide a viable option to reduce environmental impact of manure application and improve manure N availability to the crop.











