Runoff Losses from Corn Silage-Manure Cropping Systems

Bill Jokela, Mike Casler, and Mike Bertram

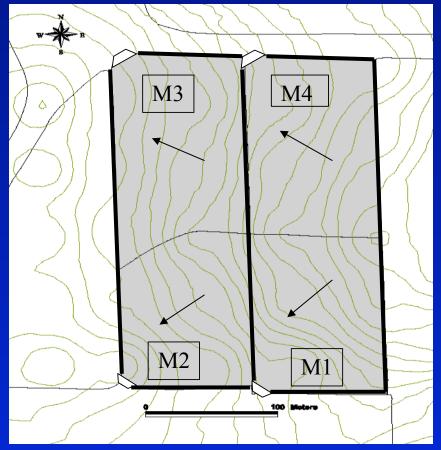
USDA-ARS, Marshfield and Madison, WI, and Univ. WI Agric. Research Station

Wisconsin Crop Management Conference Madison, WI, Jan. 15, 2014

- Runoff losses of P, N, and sediment from crop fields, especially where manure has been applied, can contribute to degradation of surface waters.
- In a dairy cropping system, the silage corn phase typically poses the most serious threat to water quality.

Objective

 To evaluate runoff losses of nutrients from different manure/crop/tillage management systems for silage corn production.



Field Site

- UW/USDA-ARS Research Station, Marshfield, WI.
- Somewhat poorly drained Withee silt loam (Aquic Glossudalfs), 1-3% slope
- Surface drainage using drive-through diversion pathways and berms

Paired-Watershed Design

- Field-scale "watersheds"
- Four fields 3.4-4.4 acre each

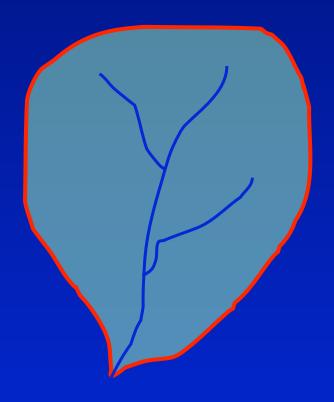
6.4 ha, or 16 acres total

Gauge Station: Runoff Monitoring

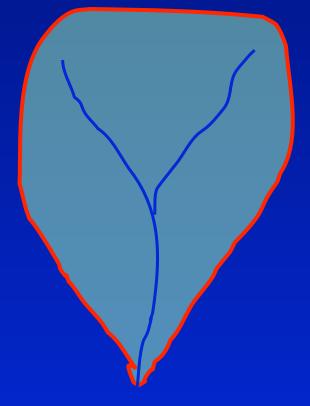
24-inch H flumes with approach channels

Gauge Station: Runoff sampling

Runoff, Nutrients, and Sediment

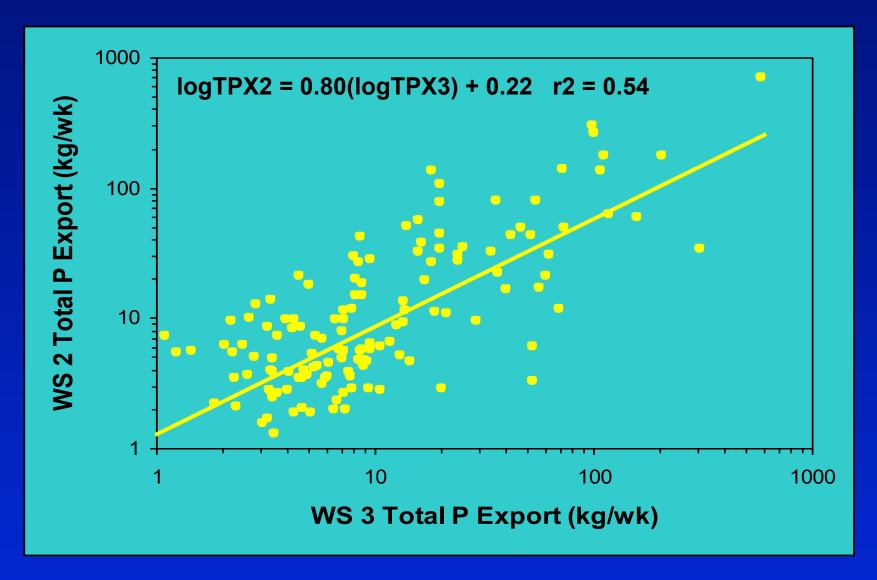

- Runoff quantity
- Suspended sediment (SS)
- Total P (TP)
- Dissolved P (DP)
- TKN, Nitrate-N, Ammonium-N

Individual samples combined into a flow-weighted composite

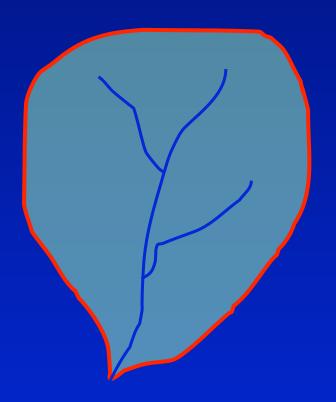

Protozoan, bacterial, and viral pathogens (not reported here)

Paired Watershed Design

Calibration Period


Control Watershed

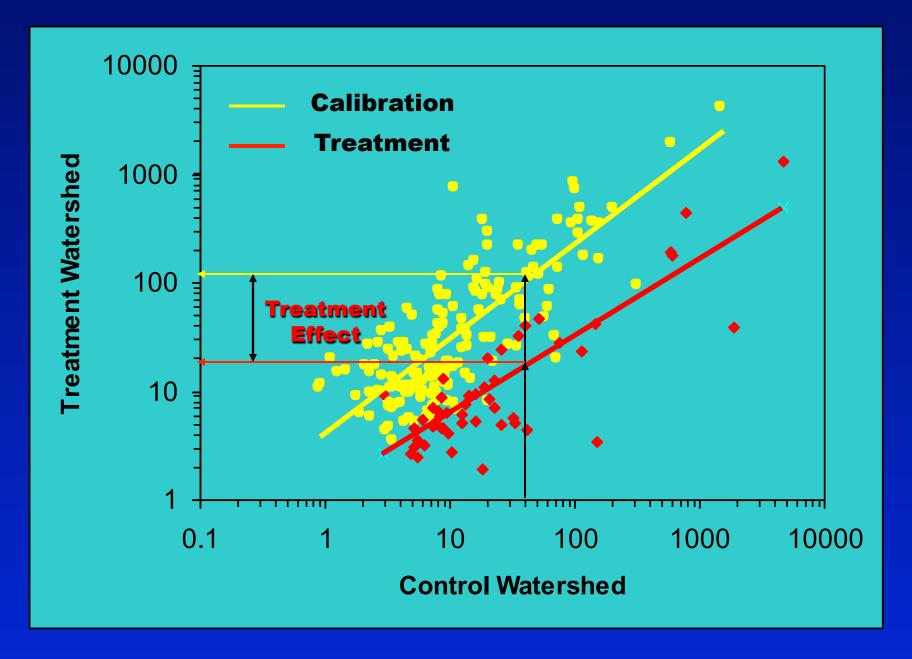
Treatment Watershed


Credit: D. Meals

Calibration Regression

Paired Watershed Design

Treatment Period



Control Watershed

Treatment Watershed

Credit: D. Meals

Paired Watershed Design Nutrient Management Systems Trial

"Watershed"	Time Period			
	Calibration	Treatment ¹		
	2006-2008	2008-2012		
M1	Control: Fall	Control: Fall manure,		
	manure, chisel	chisel		
M2	Control	Rye cover -Spring		
		manure, chisel		
M3	Control	Fall Manure - Spring		
		chisel		
M4	Control	Veg. buffer - Fall		
		manure, chisel		

¹Note: Treatments assigned randomly.

Fall Manure and Chisel Plow (Control, M1)

Manure Rate (avg): 5100 gal/ac, 14% DM, 145 N, 75 NH₄-N, 53 P_2O_5 lb/ac

Fall after chisel plowing

Spring after field cultivate/ plant emergence

Rye Cover Crop with Spring Manure and Chisel Plow (M2)

Fall Spring

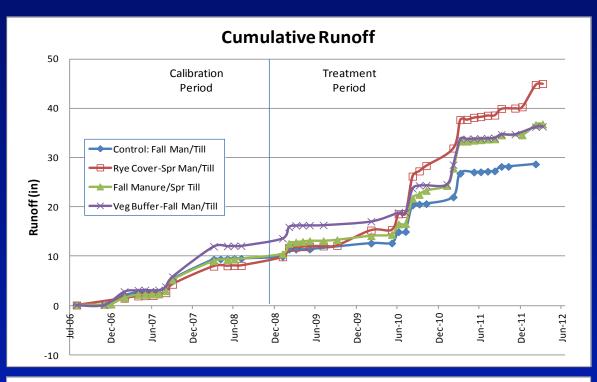
11/7/08 5/8/09

Vegetative buffer/ waterway with fall manure and chisel plow (M4)

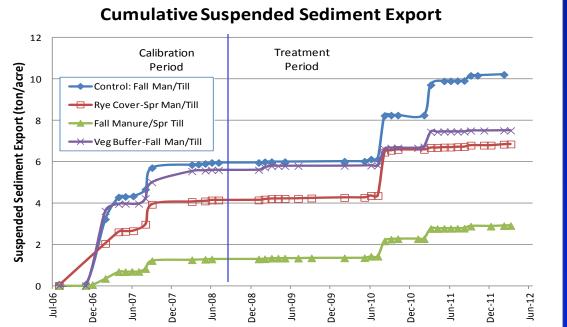
Legume-grass mix (alsike clover, timothy, brome) Fall Surface-applied Manure with Spring Chisel Plow (M3) (surface manure over-winter)

Monthly Precipitation

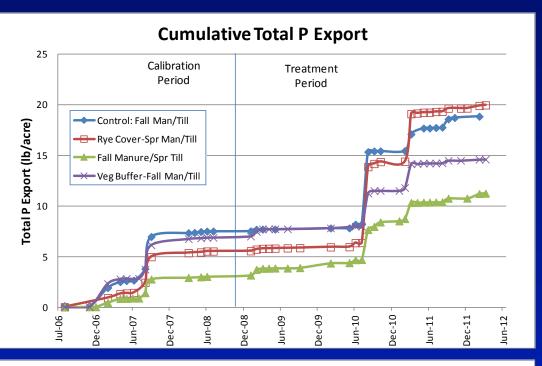
Monthly Precipitation Totals								
	inches							
Month	2006	2007	2008	2009	2010	2011	2012	1981-2010
Jan		0.9	1.2	0.4	0.9	0.7	1.2	0.9
Feb		1.0	1.1	0.7	0.3	0.6	0.2	0.8
Mar		1.7	0.6	1.3	0.7	1.9	1.3	1.8
Apr		1.1	4.2	2.9	8.0	3.6	2.3	2.8
May		4.0	3.3	3.7	2.3	3.2		3.7
Jun		3.4	3.6	2.3	5.2	4.1		4.5
Jul		3.1	4.2	0.5	9.9	8.2		4.0
Aug		4.3	1.8	7.3	3.5	2.7		4.3
Sep	0.9	4.0	1.5	0.4	7.7	3.6		3.9
Oct	1.9	4.2	1.3	6.2	2.2	2.3		2.6
Nov	0.9	0.0	1.4	0.5	1.0	0.9		2.2
Dec	1.9	3.0	2.2	2.1	0.0	1.3		1.3
Total	5.5	30.8	26.4	28.2	34.3	33.1		32.7

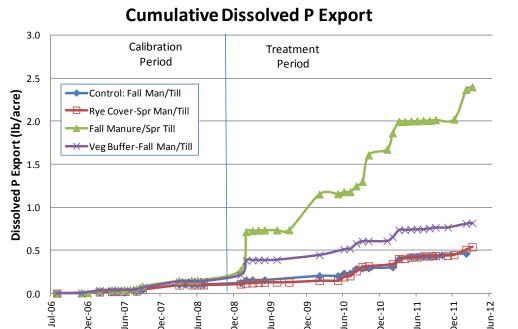

Monthly Precipitation

Monthly Precipitation Totals								
inches								
Month	2006	2007	2008	2009	2010	2011	2012	1981-2010
Jan		0.9	1.2	0.4	0.9	0.7	1.2	0.9
Feb		1.0	1.1	0.7	0.3	0.6	0.2	0.8
Mar		1.7	0.6	1.3	0.7	1.9	1.3	1.8
Apr		1.1	4.2	2.9	8.0	3.6	2.3	2.8
May		4.0	3.3	3.7	2.3	3.2		3.7
Jun		3.4	3.6	2.3	5.2	4.1		4.5
Jul		3.1	4.2	0.5	9.9	8.2		4.0
Aug		4.3	1.8	7.3	3.5	2.7		4.3
Sep	0.9	4.0	1.5	0.4	7.7	3.6		3.9
Oct	1.9	4.2	1.3	6.2	2.2	2.3		2.6
Nov	0.9	0.0	1.4	0.5	1.0	0.9		2.2
Dec	1.9	3.0	2.2	2.1	0.0	1.3		1.3
Total	5.5	30.8	26.4	28.2	34.3	33.1	0	32.7

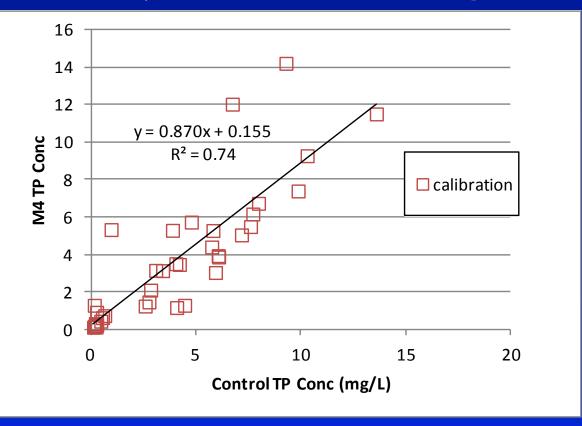

Treatment Period Results

Annual Runoff and N and P Loads

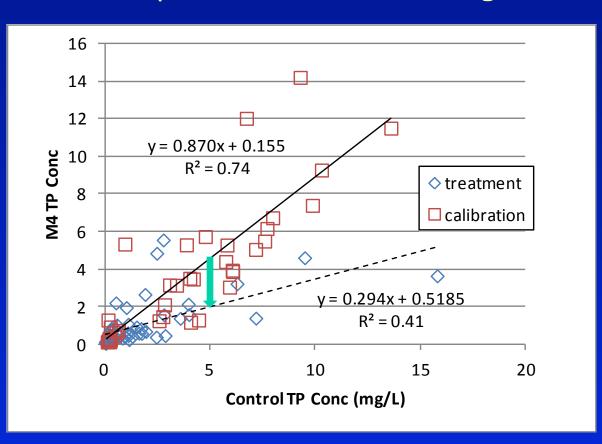

Mean	Runoff	Suspend Sediment	Total P	Dissolved P	Total N	NO ₃ -N
	inches			lb/acre		
Annual Load	8.5	1680	3.2	0.33	16.9	4.7
Snowmelt /Total	0.39	0.05	0.11	0.45	0.24	0.35


Cumulative Runoff

Cumulative Suspended Sediment Loss


Cumulative Total P Loss

Cumulative Dissolved P Loss


Did management treatment significantly affect runoff nutrients? Compare Treatment vs Control regression during Calibration and Treatment Period

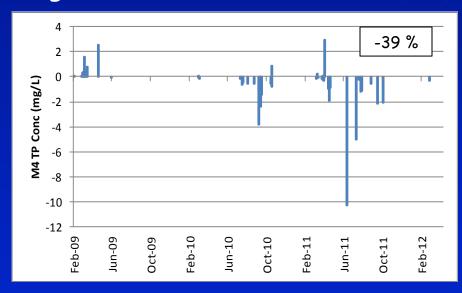
Example: Total P Conc. - Veg. Buffer-Fall Manure/Till

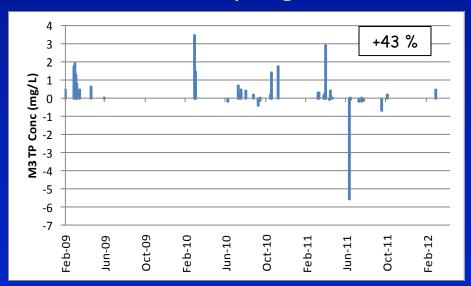
Did treatment significantly affect treatment?

Compare Treatment vs Control regression during Calibration and Treatment Period Example: Total P Conc. - Veg. Buffer-Fall Manure/Till

Statistical Signif. (permutation test)

- Slope **
- Mean **


What was magnitude of treatment effect?


Compare values observed during treatment period to values predicted from calibration period (Observed-Predicted)

Example: Total P Concentration

Veg. Buffer-Fall Manure/Till/ (M4)

Fall Manure/Spring Till (M3)

Negative = Decrease from treatment Positive = Increase from treatment

Observed-Predicted: % Change

	Rye cover – Spring Man/Till	Veg Buffer – Fall Man/Till	Fall manure – Spring Till
		Concentration	
Susp Sed.	-47	-45	-36
Total P	-28	-39	43
Dissolved P	-16	81	127

^{*}NS indicates mean and slope difference of Calibr-Trt regressions nonsignificant at P-value of 0.10.

Observed-Predicted: % Change

	Rye cover – Spring Man/Till	Veg Buffer – Fall Man/Till	Fall manure – Spring Till
		Concentration	
Susp Sed.	-47	-45	-36
Total P	-28	-39	43
Dissolved P	-16	81	127
		Total Loss*	
Susp Sed.	-9	-62	NS
Total P	NS	-42	NS
Dissolved P	57	25	237

^{*}NS indicates mean and slope difference of Calibr-Trt regressions nonsignificant at P-value of 0.10.

Summary

- Snowmelt runoff is important: 11 to 45% of P and N loads (avg. across treatments).
- Surface over-winter manure (fall manure/ spring till) increased TP and, especially, DP concentration and DP load, but decreased SS concentration.
- Rye cover crop-spring manure/till decreased SS, TP, and DP concentrations and SS load, not TP or DP load.
 - Limited growth of rye in fall
 - Increased runoff

Summary

- Vegetative buffer/waterway-fall manure/till decreased runoff (slightly) and concentration and load of SS and TP (but not DP); the most effective management system in this study.
- None of the manure-crop management systems were effective in controlling dissolved P in runoff.

