

# Wisconsin Crop Management Conf.

# Integrating UAV's into your crop management system

January 14, 2015
Brian D. Luck, Ph.D.
Assistant Professor and Extension Specialist
Biological Systems Engineering Department
University of Wisconsin-Madison





# **FAA Regulations**

- The Federal Aviation Administration does not allow commercial use of UAV's within the National Airspace System (Section 636 of Public Law 112-95).
- To be able to fly UAV's commercially you must have a Section 333 exemption issued by the FAA.
- So currently we can not <u>legally</u> implement UAV's!





# Thanks for your time!

Questions?





#### There is a loophole!

- Hobbyist Parameters
  - Altitude: Maximum of 400 ft.
  - Must maintain line of sight with aircraft
  - Must be outside of a 5 mile radius of any airport
  - No autonomous flight
  - No fee for hire operation of aircraft
- Very heavy fine for violation of these rules but usually stems from a complaint

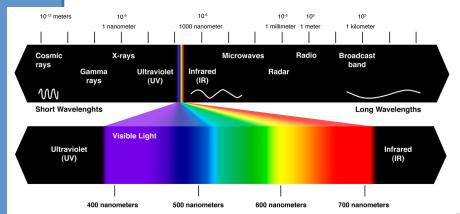




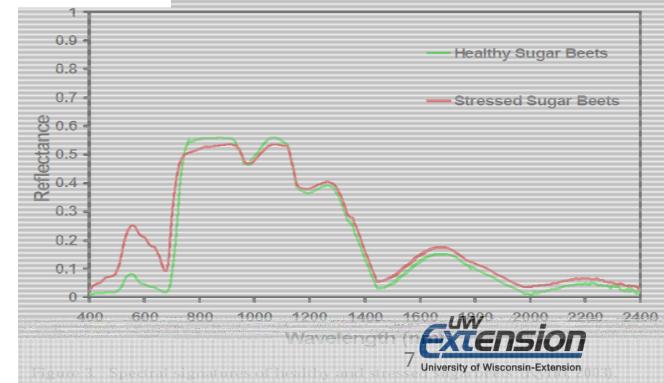
#### What can be gained?

- Information at times during the growing season that we have not previously had access except on foot
- Information about plant stress over time within the growing season
- Opportunities to adjust inputs for profit optimization over the entire growing season!






## What is remote sensing?


- Measurement or analysis of a phenomena without being in direct contact with it
- Relies on measurement of electromagnetic energy reflected or emitted from objects
- Used to identify:
  - Nutrient deficiencies, disease, water deficiency or surplus, weed infestations, insect damage, hail and wind damage, herbicide damage, plant populations, yield prediction, etc.
  - i.e. Plant Stress

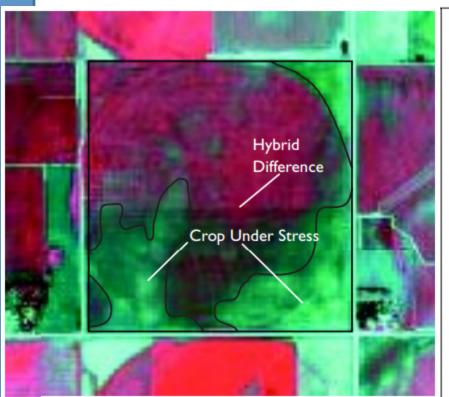


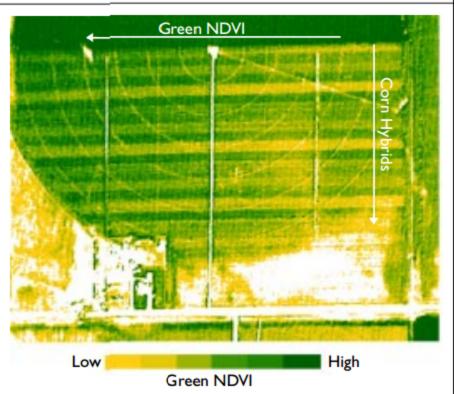




 Plants reflect light differently at differing wavelengths.







# How is it done currently?

- Normalized Difference Vegetation Index (NDVI)
- $NDVI = L \downarrow NIR L \downarrow V / L \downarrow NIR + L \downarrow V$ 
  - $-L_{NIR}$  = Near Infrared (0.725 1.10 µm)
  - $-L_{V}$  = Visible (0.58 0.68  $\mu$ m)
- Values range from -1.0 1.0
  - Rock, sand, snow = < 0.1
  - Dense vegetation = 0.6 0.9



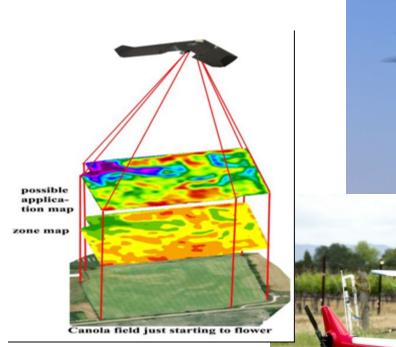











# Types of sensors

- Passive Sensors
  - Sun provides energy source
  - Sensor measures energy reflected
- Active Sensors
  - Provide their own light source
  - Must be in somewhat close proximity to subject
  - Less affected by ambient conditions
- Most sensors account for incident solar radiation present





#### Unmanned aerial vehicle









# Types of UAV's

- Fixed wing vs. rotor
- Battery powered vs. combustion powered
- Sensor considerations
- Data analysis considerations





#### Fixed Wing UAV's

- Flight speed: 27 56 mph
- Field Eff.: 450 2,470 ac./charge
  - @ 3,195 ft alt.
- Autopilot: On Most
- Mechanical Launch:
   Sometimes required
- Covers large area from high altitude to give a "macro" view of the field



Photo: agriviewsystems.com



Photo: sensefly.com





# Rotor Type UAV's

Flight speed: 0 - ~30 mph

 Field Eff.: 0 - 25 ac./ charge

Autopilot: On Most

Mechanical Launch: No

 Hover capabilities allow for close measurement of the crop for more precise diagnosis.



Photo: precisiondrone.com

Photo: gizmag.com





#### **Autonomous UAV Operation**

- Pre-determined flight path
- Repeated photo locations to maintain data consistency
- Provide <u>a lot</u> of information with minimal effort and cost
- Could be producer owned or a service provided by a third party
- Data transferred wirelessly to a server for processing/ utilization (Telematics)







#### **Current UAV Limitations**

- FAA regulations
- Cost
  - Drone
  - Camera
  - Data transfer/processing
  - Other
- Battery life/fuel capacity
- Ruggedness





#### FAA Regulations Rumor and Speculation

- UAV pilot licensure
- Flight plans submitted for high altitude
- Multiple operators
  - Pilot to operate the aircraft
  - Spotter to operate the camera
- Maintain line of sight with aircraft constantly
- UAV flights only during daylight hours
- Roll-out goal of September, 2015
  - Could be as late as 2017





#### Data and Data Analysis

- Types of data
  - Point Data (i.e. Lat, Long, Value)
  - Image Data
- Calibration
  - Sensors require calibration
  - Cameras require reference measurements for calibration as well
- Data transfer
  - Manual?
  - Automated?
  - Wireless?





## Data and Data Analysis

- Software
  - Most UAV's come fitted with software to analyze the data that they collect
  - Question where the data is stored
    - On UAV
    - PC
    - Cloud
- Can the results of this analysis be imported into my current GIS package?
- Are there any conversions that need to take place before the data will match up and make sense?



## Final Thoughts

- UAV data collection will provide us more information about our crops than we have ever had before
- Implementation
  - Two different types of UAV's for efficiency
  - Data transfer and analysis streamline
  - Follow-up spot check to confirm analysis
  - Identify minimum effective delay between flights





Brian D. Luck, Ph.D.

Assistant Professor and Extension Specialist

**Biological Systems Engineering** 

University of Wisconsin-Madison

bluck@wisc.edu

Ph: 608.890.1861

Twitter: @BLuck\_BSE\_UW

