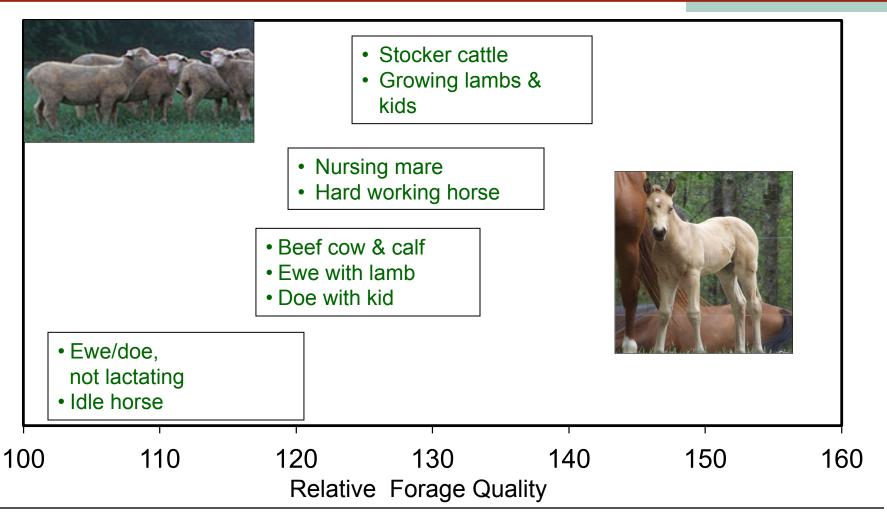

Making and Using Baleage

Dr. Dan Undersander University of Wisconsin


Forage Quality Needs of Animals

Relative Forage Quality

Forage Quality Needs of Animals

Alfalfa Forage Quality Change per Day

Component	Mean
Crude Protein, % DM	-0.25
Acid Detergent Fiber, % DM	0.36
Neutral Detergent Fiber, % DM	0.43
Neutral Detergent Fiber Digestibility, % NDF	-0.43
RFV, points	-2.9
RFQ, points	-3.6

Source: Undersander, 2009 unpublished

Why make baleage?

- Harvest with less weather effect
- Harvest higher quality forage
 - Less rain damage
 - Less leaf loss above20% moisture

Why make baleage?

- Harvest with less weather effect
- Harvest higher quality forage
- Increased yield
 - Less wheel traffic damage

Minimize wheel traffic damage

Wheel traffic 5 days after cutting

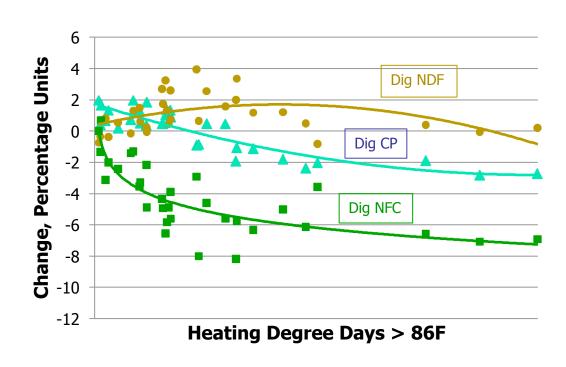
No wheel traffic

Alfalfa regrowth 10 days after cutting

Hay Preservation

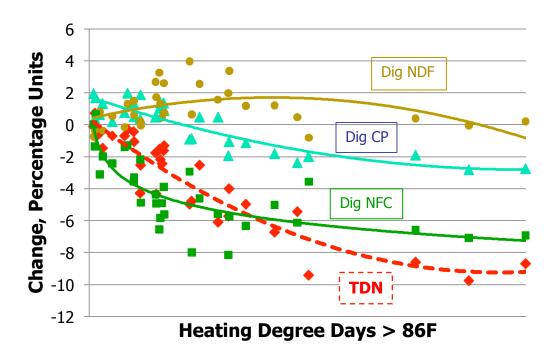
- Mold growth molds grow at 20% to 35% moisture:
 - Consume nutrients, sugars, starch
 - Respiration causes heating →hay fires
 - Produce mycotoxins
 - Detrimental to animal health
 - May decrease feed intake
 - Produce spores
 - if inhaled may cause lung disease
 - Presence reduces value of hay

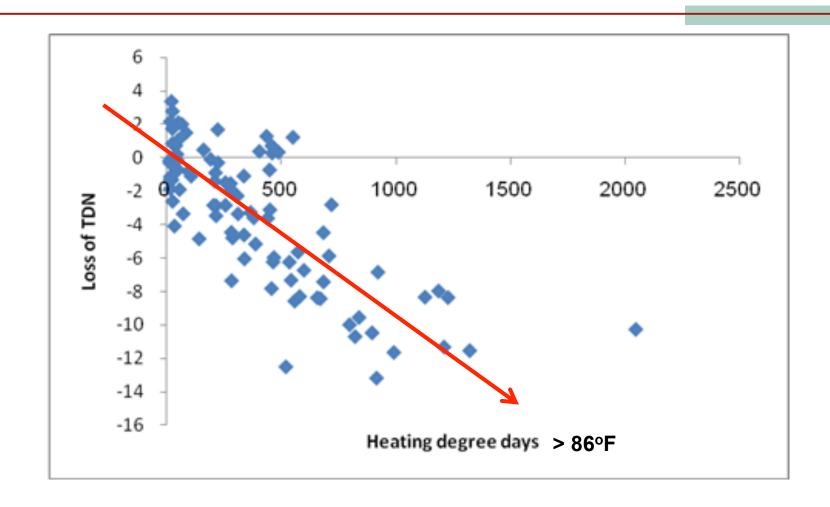
Moisture for baling to prevent mold


Square Bale Size				
Small	Medium (3' x 3')	Large (4' x 4')		
<20%	<16%	<14%		

Round Bale Size				
Small (4' w x 5' h)	Medium (5' w x 5' h)	Large (5' w x 6' h)		
<17%	<16%	<15%		

Amount of heating depends on heat transfer conditions.


Hay Preservation – Results of Malliard Reaction


Hay Preservation – Results of Malliard Reaction

■ TDN = dNFC + dCP+ 2.25*FA + dNDF - 7

TDN loss as result of heating damage

TDN losses of farmer submitted samples to forage testing laboratories

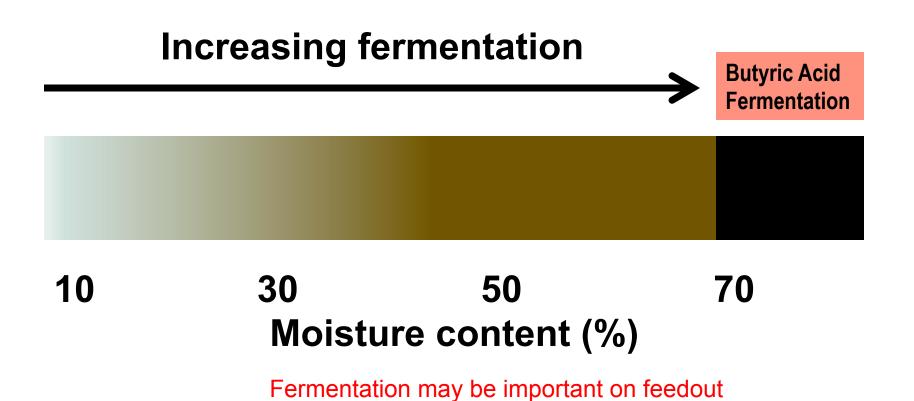
TDN losses (% of DM)	Number of samples	Percent of total
<0	911	25
0-4.0	894	25
4.0-8.0	1221	34
8.0-12.0	517	14
>12.0	69	2
Total	3612	

With corn at \$4.50/bu, TDN is 7¢/lb

TDN losses of farmer submitted samples to forage testing laboratories

TDN losses (% of DM)	Number of samples	Percent of total	\$/ton Loss
<0	911	25	0
0-4.0	894	25	0 - \$5.60
4.0-8.0	1221	34	\$5.60 - \$11.20
8.0-12.0	517	14	\$11.20 - \$16.80
>12.0	69	2	>\$16.80
Total	3612		

With corn at \$4.50/bu, TDN is 7¢/lb



Allowable moisture without spoilage in hay

- Depends on heat transfer conditions.
- Can bale without spoilage at higher moisture content if:
 - Cooler air temperatures (e.g. fall vs summer)
 - Smaller bale less self insulation
 - Single bale vs stack some growers let bales "sweat" for a couple weeks then stack.

Fermentation and moisture content

but not for preservation of baleage

Wrap in plastic

- Can wrap bales at any moisture between 20 and 70%
- Below 50% moisture oxygen exclusion
- Above 50% moisture both oxygen exclusion and fermentation with acid production
 - Less spoilage on feedout

How to make baleage:

Hay preservative additives not needed for baleage

Possible Preservatives

Ammonia

Urea

Inoculants

Propionic acid

Acetic acid

Buffered acids

Acid salts

Ethoxyquin

Note: Ammonia recommended only for grass, not alfalfa

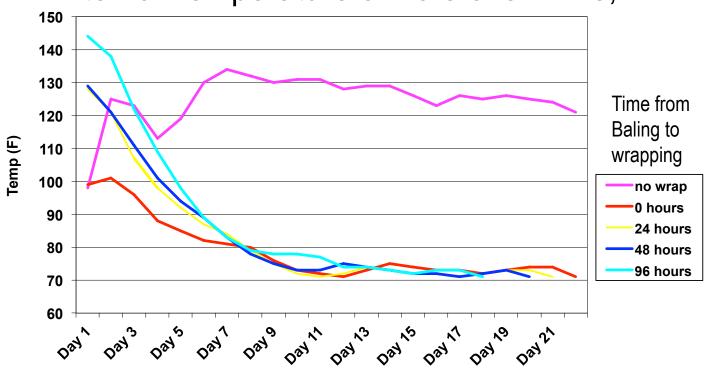
Wrap in plastic

- ✓ Preserves by excluding oxygen
- ✓ Need at least 6 wraps

Silage inoculant

Not recommended due to lack of coverage

Apply inoculum to chopped forage at chute



Apply inoculum to windrow as entering bale chamber

How to make baleage: Wrap Quickly after baling

Timing of Bale Wrapping effect on Internal Temperature of Bale over Time,

Lancaster, WI 1998 dry bales (36% moisture)

How to make baleage: Wrap with 6 layers of plastic

Effect of Plastic Wrap Thickness on Internal Temperature of Bale over Time,

Lancaster, WI 1998 (30% moisture)

Wrap in plastic

- ✓ Preserves by excluding oxygen
- ✓ Need at least 6 wraps

In-Line Wrappers

Must have uniform adjacent bales Seal ends of rows

- ✓ Use 40% less plastic than individually wrapped
- ✓ Must feed sufficient forage to stay ahead of spoilage when removed end bales.

Avoid UV Degradation of Plastic

- Buy good plastic
- Avoid oiled sisal twine
- Plastic, untreated sisal, netwrap

In-Line vs individually wrapped

As a rule of thumb -

- individually wrapped bales is most appropriate for less than ~50 head of cattle
- above 50 to 75 head, consider in-line wrapping to reduce plastic use.

Baling

Cutting forage for hay/haylage

- Higher initial machinery cost
- Higher energy requirement
- Stones cause knife damage

Baling

Cutting forage for hay/haylage

- Higher initial cost
- Higher energy requirement
- Stones cause knife damage

- ✓ Greater bale density
- ✓ Better feed intake
- ✓ Better animal gain
- ✓ Less feeding loss

Summary

- Cut alfalfa for high yield and needed quality
- Bale to minimize heating
- Use baler with cutter
- Wrap within 24 hours after baling
- Wrap with at least 6 layers of plastic

Questions

For additional Information:

http://www.uwex.edu/ces/crops/teamforage/index.html

www.uwex.edu/ces/forage

UW Publications

Learning Store

