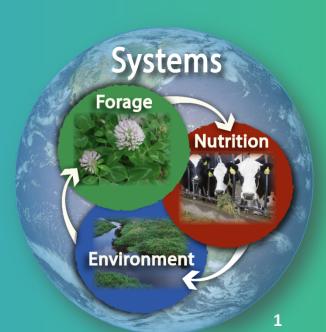
Manure on Perennial Forages: Benefits and Challenges

Bill Jokela


Research Soil Scientist, USDA-ARS

Dairy Forage Research Center

Marshfield, WI

Wisconsin Crop Management Conference Jan 13, 2016. Madison, WI

U.S. Dairy Forage Research Center USDA Agricultural Research Service

Why apply manure on perennial forages? Alfalfa, other legumes, grass forages

- Increases acreage available for spreading
- Multiple windows of time for application
- Provide nutrients
 - Forages have high nutrient need (K, P, S, B) compared to grain crops
 - Grass forages responds to nitrogen
- Symbiotic N₂ fixation buffers N supply
- Alfalfa removes excess soil nitrate

Manure on Perennial Forages: 3 Application Strategies/Times

- Preplant: before seeding
- Following last harvest/at termination of stand
- Topdress on established stands

Preplant Liquid Dairy Manure and Alfalfa Yields

Rosemount and Waseca, MN; Marshfield, WI

- Manure increased yields vs nonfertilized control in seeding year and first production year
 - Except where severe compaction (Waseca); no yield increase in seeding year
- Yields from manure sometimes > P, K fertilizer
 - Sulfur and micronutrients in manure
 - Manure N in seeding year (?)
 - Soil physical and/or microbial effects
- Manure sometimes increased weeds (seeding year)
- Summary: Yield increase if nutrients needed; also other beneficial effects

Manure Applications at Termination of Stand/Before Plowdown

- Avoids potential damage to forage crop
- Provides N to succeeding crop
- BUT... often adequate N credit from alfalfa

- IA, WI, MN, PA (61 sites)
 - Only 7 sites showed yield increase from N application
- MN and other published results (259 trials)
 - Yield response to N not likely on medium-textured soils
 - Depends on length of stand, soil conditions, etc.
- Additional N usually not needed; excess N risks nitrate leaching

Topdressed Manure on Established Stands

Benefits

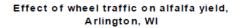
- Another window for application
- May be yield increase
 - Nitrogen on grass forages
 - Legumes, if nutrient need

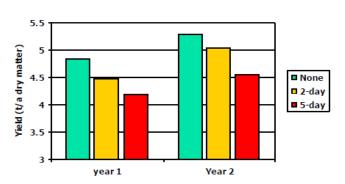
But also challenges, potential problems

Challenges and Limitations of Manure Broadcast on Established Stands

- No N requirement for legumes, so no economic value from manure N
- May be uneven application
- Nutrient runoff, especially late fall or winter application
- Possible stand damage and/or yield loss due to leaf coating or wheel traffic
- Pathogens

Manure solids can coat leaves


- Manure solids coating leaves
 - Leaf scorching
 - Clogging of pores
- Excessive rates can reduce yield
- To minimize adverse effects:
 - Avoid excessive rates of manure solids
 - Application rate of solids more important than overall manure rate
 - Apply manure promptly after harvest


Wheel traffic affects yields

Causes of yield reduction

- Crack crowns (disease, reduce shoots produced)
- Break regrowing shoots
- Compaction (air, water, root growth)

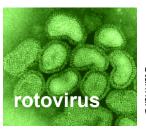
Recommendations

- Apply manure immediately after harvest
- Avoid wet soil conditions
- Avoid unnecessary trips over field
- Plant tolerant varieties
- Size tractor to fit equipment
 - Minimize compaction and wheel traffic area
- Avoid tractors with duals
- Consider wider harvesting equipment

Manure often carries pathogens

- Several zoonotic and pathogenic bacteria: Salmonella, Listeria, E. coli, Mycobacterium
- Several protozoa that affect human and animal health (including Giardia and Cryptosporidium)
- Wide variety of viruses some persist > 6 months in manure

Johne's disease



Harbinson

Heyneman

No manure from diseased livestock on hay or pasture!

Slide Credit: M Russelle, **USDA-ARS**

Alfalfa Yields from Topdressed Manure on Established Stands: Research Results

- Dairy slurry on alfalfa, alfalfa-grass (MD)
 - Manure = Fertilizer = Nonfertilized Control
- Liquid dairy manure (WI)
 - Preplant manure increased yield; but topdress manure decreased 20% in Yr 1, no effect in Yr 2 (wheel traffic effect)
- Manure topdress (MN)
 - 30% yield increase
- Banded liquid dairy manure (Ontario)
 - Yield response varied by cultivar (49) but all increased vs control (fertilized based on soil test); average 14% yield increase over 3 years
- Summary: Topdressed Manure
 - Yield increase, esp. if nutrient need (P, K, other); also other factors
 - May be no yield effect or sometimes decrease
 - Depends on balance: Nutrient response and any negative effect

Topdress Manure Timing for Alfalfa Stratford, WI

- Liquid dairy manure at 4500 gpa
- Application treatments
 - No manure
 - Stubble immediately after harvest
 - 1 week regrowth
 - 2 weeks regrowth
- Ensiled as wrapped balage

Results: Manure Timing for Alfalfa

- No effect on measured yield, but...
 - Drought increased variability
 - Not main objective of experiment
- Little/no effect on forage quality
- Silages well preserved, no undesirable odor or evidence of ammonia or butyric acid
- Clostridium Cluster 1
 - Increased with manure application
 - Greater increase with delayed manure application
 - No indications of clostridial fermentation
- Recommendations to lower risk when manure applied
 - Apply to stubble before regrowth
 - Wilt longer (drier) before ensiling
 - Consider using lactic acid-producing inoculant

What about topdressed manure on grass forages? Nitrogen is key!

- Reed canary grass (MN, WI, IA)
 - Manure: Yield increase of 150 to 260% vs no N Control
- Orchardgrass, reed canary grass (VT)
 - 80 to 90% yield increase vs Control (no N)
 - Manure similar to N fertilizer (80 to >100%)
- Tall fescue, 7 yrs, surface banded manure (BC)
 - Yield increase of 100% vs Control
 - Manure = fertilizer N (equal total N rates)
- Summary: Topdressed manure on grass
 - Large yield increases from liquid manure
 - Yields similar to those from fertilizer N

Alternatives to Surface Broadcast: Potential Benefits

- Reduced ammonia loss
 - Potential yield increase (grass forage) and environmental benefits
- More uniform spreading
- Less contamination of forage
- Decreased runoff of nutrients, pathogens
- Less odor
- ...but also may cause damage and reduce yield.

Alternative Application Methods: Yield and Environmental Effects

Grass forages

- Orchardgrass, reed canarygrass (liquid dairy; VT)
 - Surface banding increased yield in 2 of 4 site-years (6-14%); reduced ammonia emission 40% (vs broadcast)
- Tall fescue and orchardgrass (dairy slurry; BC)
 - Surface banding increased yield 7%, reduced ammonia emission 30% (vs broadcast)
 - Surface band over aeration slots (SSD) increased yield 12%, reduced ammonia 47% (vs broadcast)

Alternative Application Methods: Yield and Environmental Effects

Alfalfa

- Ontario
 - Yield increase from topdressed dairy manure vs fertilized control (3 yrs; 49 cultivars)
 - Surface banding (14%)
 - Band-aeration (10%)
 - Effect of manure-root contact in aeration slots

Saskatchewan

- Low-fertility site: Injected manure increased yield
- High-fertility site: injector damage decreased yield
- Balance between nutrient response and mechanical damage

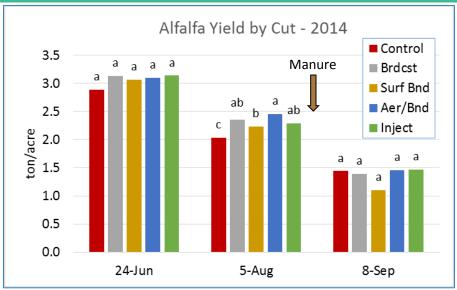
Application Methods for Alfalfa Liquid Dairy Manure, Marshfield, WI

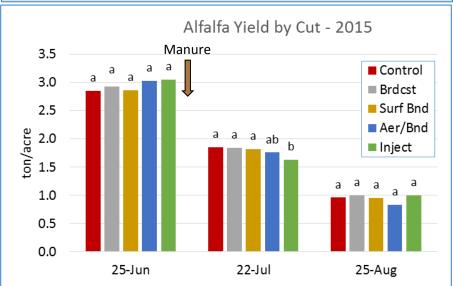
Treatments

- Control (no manure; fertilized as needed)
- Broadcast manure
- Surface banded
- Aerator/banded manure (AerWay SSD)
- Shallow injection (Yetter Avenger)

Measurements

- Yield and nutrient uptake
- Ammonia emission
- Greenhouse gas (N₂O) emission
- Runoff nutrient loss

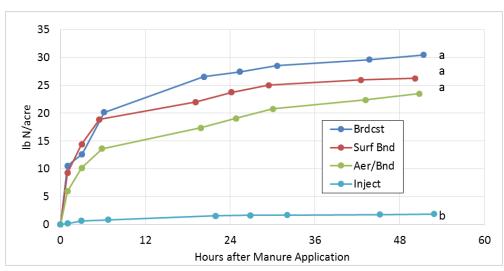




Jokela et al.

Alfalfa Yield by Harvest

2014


 No yield effects in first harvest after manure or next harvest (2015)

2015

 Lower yield from injection 1st harvest after manure, but not next harvest

Gaseous N Emission

Cumulative Ammonia N Loss - 2015

- Most of loss in first 8 hours
- Injection greatly reduced NH₃ loss (>95%) vs Broadcast
- Trend: Aerator-Band
 Surface Band
 Broadcast

Greenhouse Gas (N₂O) Emission - 2015

- Increased emission and treatment effects limited to 1-month post-manure period
- Greater emission from injection and aerator-band
 - Better conditions for denitrification
 - Less NH₃ loss, so more N available for denitrification

Preliminary Results: Summary

- Results of first 2 years of 3-year experiment
- Minimal effects of manure application on yield compared to the no-manure control (optimum or higher soil test P and K)
- Some indication of a short-term (one harvest) decrease in yield from the injection treatment.
- Injection greatly decreased ammonia emission, but there may be a trade-off with increased greenhouse gas (N₂O) emission.
- Nutrient runoff losses were quite variable; no consistent treatment effects (preliminary)

Recommendations for Pre-plant Manure Before Seeding

- Priority on low fertility soils
- Can apply to meet P and K needs (but avoid excess N)
- Limit rates to avoid high salt and NH₃ levels
- Till to mix thoroughly with soil to avoid manure-seed contact

Recommendations for Manure Applications at Termination of Stand/Before Plowdown

- Limit to N need of succeeding crop (with legume credit)
- Apply to fields with poorest stands, least regrowth (lowest N credit)
- Apply immediately before tillage to minimize nutrient runoff loss potential
- Use Pre-sidedress Nitrate Test (PSNT) next year to assess N need for corn

Recommendations for In-season Topdressed Manure Applications

- No serious disease in herd or manure
- Apply where nutrients needed
 - Grass forages (N)
 - Low-fertility fields
- Low-moderate rates
- As soon as possible after harvest
- Older stands of alfalfa; greater grass content
- Apply uniformly; no chunks
- Firm soils
- Consider alternatives to surface broadcast

QUESTIONS?

Leading the world in integrated dairy forage systems research.

U.S. Dairy Forage Research Center

www.ars.usda.gov/mwa/madison/dfrc