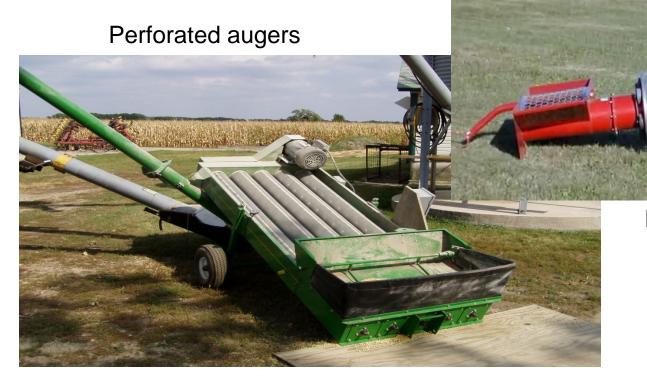
Managing Dry Grain in Storage

Scott Sanford

Distinguished Outreach Specialist
Biological Systems Engineering
University of Wisconsin – Madison

Six causes of storage problems

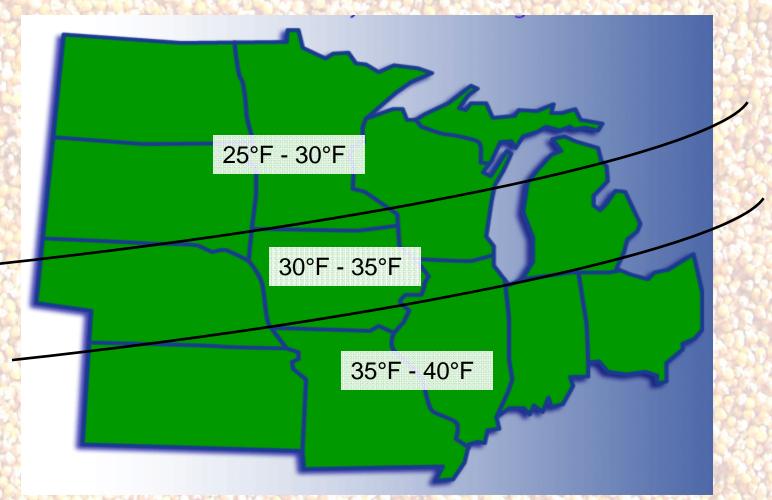
- Too much foreign matter and fines
- Grain too Warm
- Grain too Wet
- Uneven grain temperatures
- Storage facility not cleaned before harvest
- Grain not checked often enough



Too much foreign matter & fines

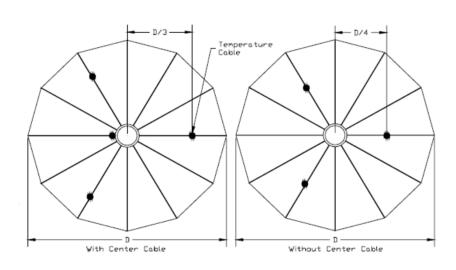
- Screen before drying
- Screen before storage
 - Less volume to dry
 - Increased air flow in dryer
 - Fines plug screens and aeration floors
 - Insect / Mold growth in fines

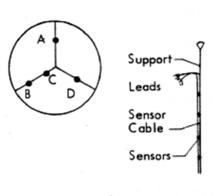
- Spreader in Bin
 - Evenly distributes seed and fines

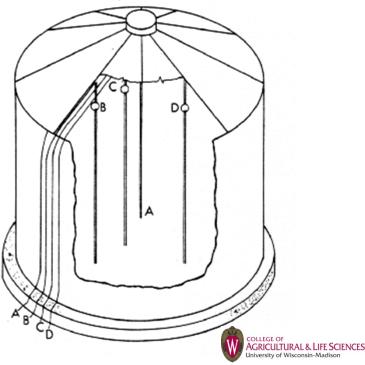

Grain too Warm

- Grain temperature within 10 15F of average daily temperature
 - So condensation doesn't occur
- Summer Storage temperature
 - 50°F in upper midwest
 - 60°F in southern US
- Winter storage temperature
 - 30 to 35°F in southern WI
 - 25 to 30°F in northern WI

Suggested Winter Grain Storage Temperatures


Temperature Measurement




Temperature Cable locations

- •Temperature changes can be small and indicate a problem (1-2°F)
- Log data for reference
- •Compare same locations over time to detect problem areas

Temperature monitoring

Normal Temperature Profile**

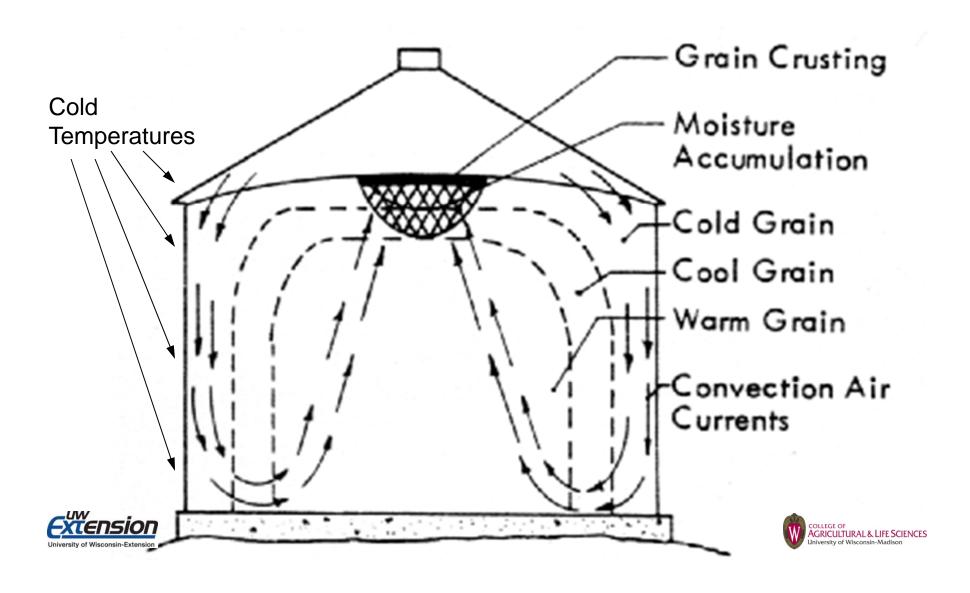
			Sensor							
Date	Bin	Cable	1	2	3	4	5	6	7	8
5 Dec	1	1	26	26	27	27	25	27	32	32
11 Dec	1	1	26	25	26	27	27	27	25	26
17 Dec	1	1	27	25	27	28	27	28	34	34
23 Dec	1	1	27	26	27	27	27	29	32	33

^{**} Sensor 7 & 8 not covered with grain

Sensor

Hot Spot Temperature Profile

			Sensor							
Date	Bin	Cable	1	2	3	4	5	6	7	8
5 Dec	1	1	29	28	29	30	31	30	31	32
11 Dec	1	1	29	28	29	32	31	31	32	29
17 Dec	1	1	30	29	30	33	32	31	33	32
23 Dec	1	1	31	29	30	35	32	31	33	35

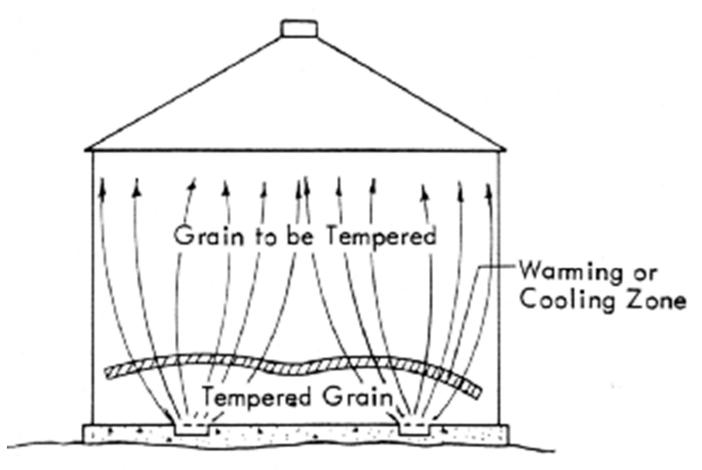

Max. Grain Storage Moisture Percentage

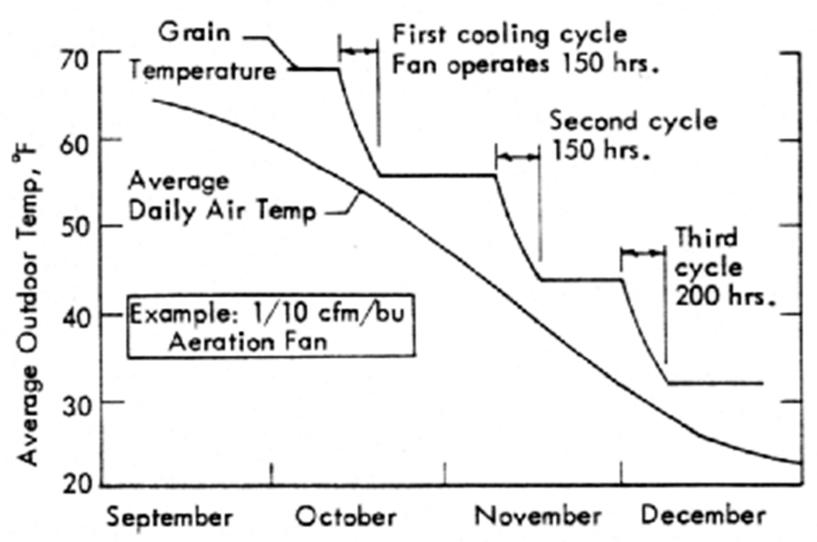
	Storage Period (months)						
Crop	Up to 6 mos	6 to 12 mos	> 12 mos				
Cereal Grains	14%	13%	13%				
Canola	10	8	8				
Corn	15	14	13				
Soybeans	13	12	11				
Sunflowers (oil type)	10	8	8				
Edible Beans	16	14	13				
Buckwheat	16	13	13				

Uneven Grain Temperatures Convection Air Movement

Aeration

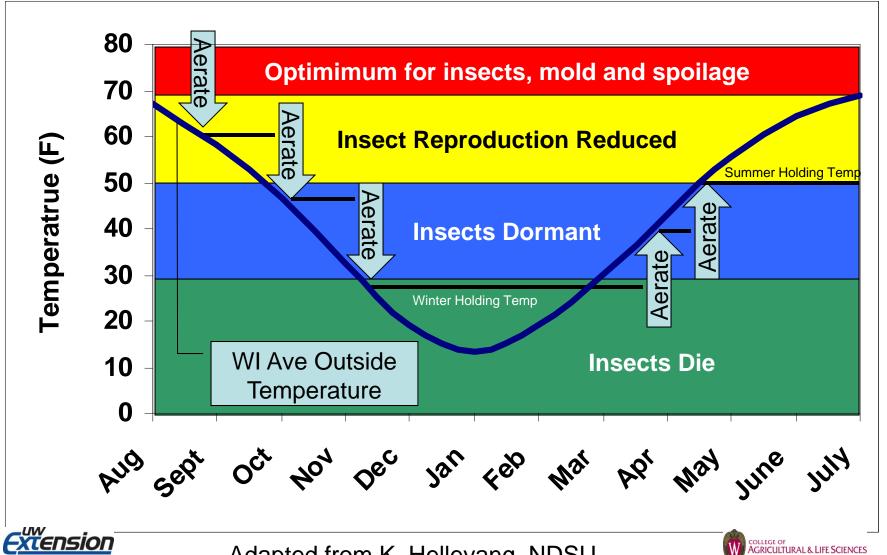
- Level grain surface
 - Distance of airflow path
- Aeration rate


- For a 10 15°F grain temperature change:
- @ 0.05 cfm/bu = 280 hours vs 140 hours @ 0.1 cfm/bu
- 0.1 cfm/bu (recommend for on-farm storage)
- Higher aeration rates take advantage of short periods of cool temperatures
- Cover fans when not in use
 - Rodent control, reduces convection air flow


Cooling / Warming Zone

Positive pressure—cooling or warming zone moves up through the grain.

COLLEGE OF AGRICULTURAL & LIFE SCIENCES

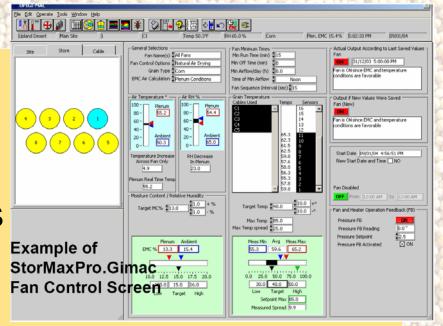

Cooling steps

Cool Grain Prevents Storage Problems

Controlling Insects

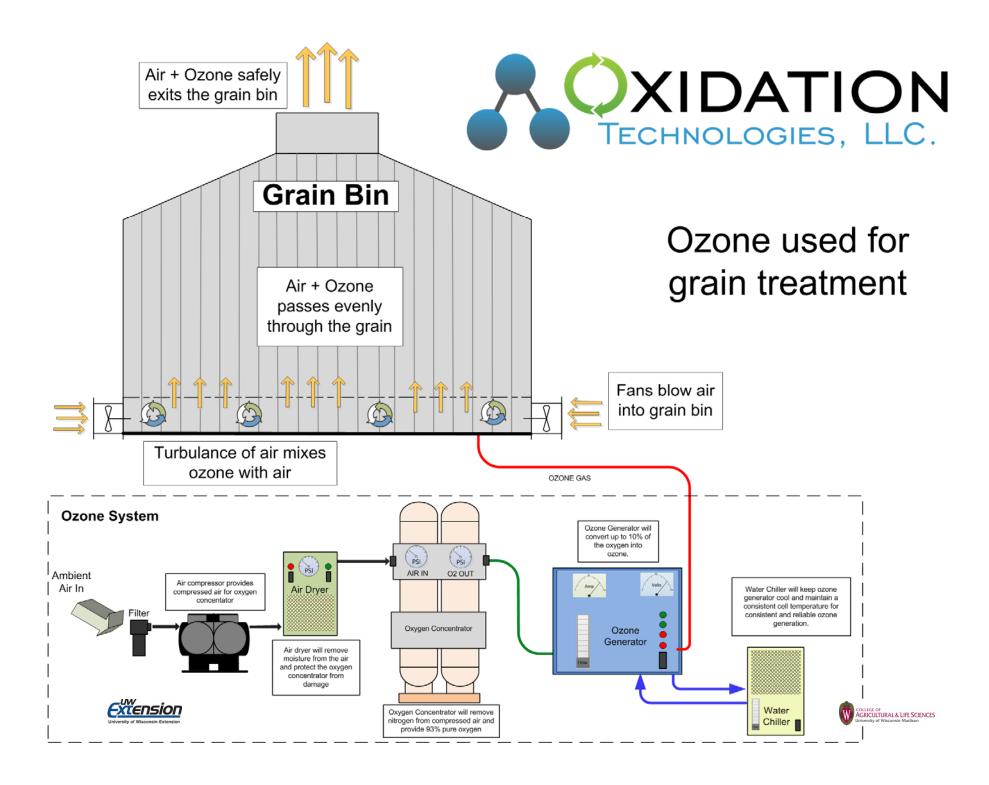
- Sanitation before filling bins CLEAN BINS OUT
- Temperature control < 50°F
- Detection
 - Probe Traps 5 per bin
 - Sticky Traps
 - Pitfall traps
- Insecticides / Fumigants
 - Contact your buyer before applying

- Stored Product Pests, L.J. Mason, J. Obermeyer, Bulletin E-66-W, Purdue Extension, 2010. http://extension.entm.purdue.edu/publications/E-66.pdf
- Controlling Insects in Stored Grain, D.W. Johnson, L.H. Townsend, Bulletin ENTFACT-145, University of Kentucky Extension, 2009. http://www2.ca.uky.edu/entomology/entfacts/entfactpdf/ef145.pdf
- PJ Liesch UW Insect Diagnostic Lab
 - http://labs.russell.wisc.edu/insectlab/



Temperature / Fan Controls

- Thermostats
 - Hour meter run time
- Microprocessor controls
- Computer-based controls
 - Archive data
 - Plot data
 - Accurate temperature settings
 - Monitor temperatures from office
 - Range of features and cost
 - Does NOT eliminate the need to check bins



Inspection Monitoring Checklist

- Inspection frequency
 - 1 to 2 weeks during warm weather
 - 3 to 4 weeks during winter
- Turn on aeration fans
 - Ensure proper operation
 - Check static pressure in plenum
- Climb up and look inside bin
 - Condensation under roof, wet grain near hatches
 - Snow cover run fans until sublimated
 - Check for off-odors
 - Check grain surface crusting, mold
 - Measure grain temperatures at several locations
- Check for signs of insect, mold, rodent activity
- Record observations in logbook / Checklist
- Compare observations with previous findings
- Take any corrective action required

Ozone Technology

- Kills insects
 - Efficacy depends on
 - Insect species, life stage, O3 concentration
 - External feeders Exposure 35 ppm for 6 days
 - Internal feeders Exposure 135 ppm for 8 days
- Reduce micotoxin levels
 - Oxidizes toxins
- Stops Mold growth
- No residual effect
- Will NOT stop heating

- Never enter a bin while unloading equipment is operating
- Lockout controls before entering bins
- Beware of potential cavities under crusted grain
- Use safety equipment
 - Harness
 - Respirator

Other Resources

- Managing Dry Grain in Storage, AED20, Midwest Plan Service, Ames, IA, 2004. (www-mwps.sws.iastate.edu)
- Dry Grain Aeration Systems Design Handbook, MWPS-29, Midwest Plan Service, Ames, IA, 1999.
- Grain Drying, Handling and Storage Handbook, MWPS-13, Midwest Plan Service, Ames, IA, 1987.
- Stored Product Protection Cost of Good Sanitation Practices for On-Farm Grain Storage, GQ-50-W, Purdue Extension, 2008.
 - https://www.extension.purdue.edu/extmedia/gq/gq-50-w.pdf
- North Dakota State U. Post harvest resource links
 - https://www.ag.ndsu.edu/graindrying
- U. of Minnesota Post Harvest Crop Handling
 - http://bbe.umn.edu/postharvest

Ozone Treatment Resources

- Hansen, L. S., Hansen, P. and Jensen, K.-M. V. (2012), Lethal doses of ozone for control of all stages of internal and external feeders in stored products. Pest. Manag. Sci., 68: 1311–1316. doi: 10.1002/ps.3304
- Mason, L.J., C.P. Woloshuk, F. Mendoza, D.E. Maier, S.A. Kells (2006), Ozone: A new control strategy for stored grain, 9th International Working Conference on Stored-Product Protection, pp 904-907.
- B.K. Tiwari, C.S. Brennan, T. Curran, E. Gallagher, P.J. Cullen, C.P. O' Donnell (2010), Application of ozone in grain processing, Journal of Cereal Science, 51: 248-255.

Contact Information

Scott Sanford

Distinguished Outreach Specialist Rural Energy Issues

Biological Systems Engineering

University of Wisconsin - Madison

608-262-5062

sasanford@wisc.edu

