# SOURCE EFFECTS ON PHOSPHORUS AVAILABILITY

Larry G. Bundy

Dept. of Soil Science

University of Wisconsin

#### Potential Phosphorus Source Differences

- P availability to plants
- Effects on soil test P
- Effects on long-term productivity
- Effects on soil characteristics
- Effects on Plosses in runoff

#### Manures as P Sources

All manures are not the same -

- · Animal species & management
- Water soluble P content
- Mineralization rates of organic P component
- Constituents that may react with inorganic P

### P Source Differences (Plant availability of P)

- Goss & Stewart (1979)
  - -Compared manure and superphosphate as P sources for alfalfa
  - -Alfalfa grown with fertilizer P removed higher % of added P than with manure

### P Source Differences (Plant availability of P)

- Goss & Stewart (1979)
  - Alfalfa grown with manure P had greater yield increase/unit P uptake (efficiency).
  - -Greenhouse yields higher with fertilizer, no yield difference in field experiments

### Evidence for enhanced P availability with manure vs. fertilizer P

- During & Weeda (1973)
  - Manure at equiv. rates with P fert. decreased P sorption and increased recovery in pastures
- Abbott & Tucker (1973)
  - -Residual effects of manure or fert. P in calcareous soils showed higher available P with manure
- Laboski & Lamb (2003)
  - -Liquid swine manure P more available than fert. in 1 to 9 month incubation

#### Manure P Source Differences (Marshall & Laboski, 2004)

- Manure P effects on soil test P:
  - Dairy manure P less than fert. P
  - Swine manure P greater than fert. P
- Possible mechanisms:
  - Dairy manure constituents react with soil Fe & Al to increase P sorption
  - Swine manure constituents block retention sites in soil or displace sorbed P

### Effect of manures and inorganic P on soil test P after 64-wk incubation

|                                 | Manure P | Bray P1    |       |
|---------------------------------|----------|------------|-------|
| P Source                        | Total P  | Water sol. | (ppm) |
| Manure - high P diet            | 1.31     | 0.37       | 59b   |
| Manure - medium P diet          | 1.09     | 0.21       | 55bc  |
| Manure - low P diet             | 0.66     | 0.13       | 46d   |
| Fiber fraction                  | 0.28     | 0.03       | 34e   |
| Whole manure                    | 0.85     | 0.25       | 58b   |
| Biosolids                       | 3.97     | 0.22       | 52c   |
| Fertilizer - CaHPO <sub>4</sub> |          |            | 70a   |
| Control (no P added)            |          |            | 22    |

Ebeling et al. (2003). Soil test P values are averages from 3 P rates 90, 180, 360 lb/acre

### P Source Differences (Effects on long-term productivity)

- Edmeades (2003)
  - -Manure & fertilizer effects on soil productivity & quality
  - -14 trials, 24 paired comparisons, long-term effects (20-120 years)
  - -Includes classic experiments: Morrow, Sanborn, Magruder, Breton, Broadbalk (Rothamsted), others

### Manure and fertilizer effects on soil productivity and quality (Edmeads, 2003)

|                                | Ef     | fect       |
|--------------------------------|--------|------------|
| Characteristic                 | Manure | Fertilizer |
| Organic matter                 | higher |            |
| Soil microfauna                | higher |            |
| Topsoil P,K,Ca,Mg              | higher |            |
| Subsoil nitrate, Ca, Mg        | higher |            |
| Crop production                | NS     | NS         |
| Soil quality                   | ?      | ?          |
| Runoff and leaching of P and N | higher |            |
| Bulk density                   |        | higher     |
| Hydraulic conductivity         | higher |            |
| Aggregate stability            | higher |            |

### Long-term P Additions and Forms of P in Soil

- Motavalli and Miles (2002)
  - -Examined long-term (111-yr) effects of manure & fertilizer on soil P fractions in Sanborn Field
  - -Continuous corn yields were consistently higher with fertilizer that with manure
  - -Extraction methods identified differences in functional soil P pools

## Long-term P source effects on inorganic P fractions from Sanborn Field continuous corn plots

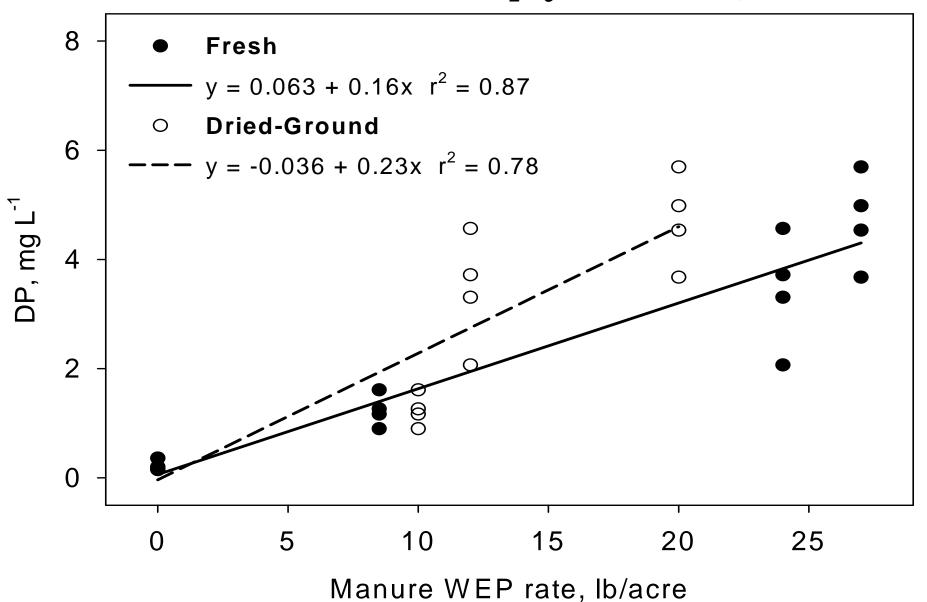
| Treatment               | Avail-<br>able     | Labile         | Slow  | Occl-<br>uded | Weather -able |
|-------------------------|--------------------|----------------|-------|---------------|---------------|
|                         |                    |                | ppm P |               |               |
| None                    | 3                  | 18             | 19    | 14            | 1             |
| Fertilizer              | 54                 | 55             | 76    | 39            | 25            |
| Manure                  | 56                 | 181            | 149   | 41            | 23            |
| Prairie  Adapted from M | 4<br>Iotavalli and | 7 Miles (2002) | 22    | 10            | 7             |

#### P Source Differences (Effects on P runoff losses)

- Kleinman et al. (2002)
  - -Compared surface and incorporated DAP and manures, 90 lb P/acre
  - Simulated rainfall, runoff boxes, 3 soils

### Runoff P from surface and incorporated P sources on a high P soil

|                | Surfac | e-applied | Incorporated |  |
|----------------|--------|-----------|--------------|--|
| Treatment      | DRP    | Total P   | Total P      |  |
|                |        | ppm       |              |  |
| Control        | 0.2a   | 4a        | 5a           |  |
| DAP            | 13b    | 20b       | 5a           |  |
| Dairy manure   | 2c     | 3.5a      | 9b           |  |
| Poultry manure | 11b    | 21b       | 7ab          |  |
| Swine manure   | 14b    | 16b       | 7ab          |  |


Adapted from Kleinman et al. (2002). Soil = Hagerstown.

#### Manure type effects on P losses Arlington, WI 2004

| Manure                          | Avail.<br>P <sub>2</sub> O <sub>5</sub> | Run-<br>off | Total P |       |
|---------------------------------|-----------------------------------------|-------------|---------|-------|
|                                 |                                         |             | Conc.   | Load  |
|                                 | lb/a                                    | mm          | ppm     | g/ha  |
| Control                         | 0                                       | 9 b         | 1.36b   | 130b  |
| Chicken 2.7 t/a                 | 60                                      | 7 b         | 2.60b   | 188b  |
| Dairy, semi-<br>solid, 31.1 t/a | 60                                      | 20 ab       | 8.51a   | 2086a |
| Dairy, slurry,<br>17,340 gal./a | 60                                      | 35 a        | 6.88a   | 2463a |

Andraski and Bundy, unpublished (2004).

Relationship between manure WEP rate and DP in runoff for fresh and dried/ground manure samples (dairy semi-solid, dairy slurry, and poultry) applied at 100 lb  $P_2O_5$ /acre at Arlington, 2004.



#### Summary

- P availability from manures can be greater or less than fertilizer P
- Manure P availability is influenced by:
  - -Organic P mineralization
  - -Initial microbial immobilization
  - -Reaction of manure constituents with soil or P
  - -Manure soluble P content

#### Summary

- Manure vs. fertilizer P effects on long-term productivity indicate no clear advantage to manure
- Soil quality parameters and potential for nutrient loss may be increased with long-term manure applications

#### Summary

- Long-term manure and fertilizer applications influence organic and inorganic P fractions
- Differences in runoff losses between manure and fertilizer are often due to placement method and the dry matter and soluble P content of manures