LONG-TERM N FERTILIZATION EFFECTS ON CORN YIELD AND SOIL PROPERTIES

Larry G. Bundy
Dept. of Soil Science
University of Wisconsin

BACKGROUND

- Experiment: Long-Term Continuous
 Corn N Rate Experiment (1958 2003)
- Location: University of Wisconsin Arlington Agricultural Research Station
- Soil: Plano silt loam

MANAGEMENT PRACTICES

- Corn grown annually since 1958, grain removed, residues returned
- Moldboard plow tillage
- Since 1984, 30-inch rows, 32,000-35,000 seeds/acre.
- Starter fertilizer (2-in x 2-in) annually, 200 lb/acre of 6-24-24

TREATMENTS

- N Rates: 1958-2002, none, medium, high (see Table for rates).
- Lime: Imposed in 1985, Lime applied to half of each long-term N plot to reach target pH range of 6.5-7.0.
- Design: Randomized complete block, four replications, split-plot treatment arrangement to accommodate lime treatments.

Nitrogen rates in long-term continuous corn experiment, Arlington WI, 1958-2002

Long-term N fertilizer rate, lb N/acre

None	Medium	High
0	50	100
0	80-125	160-250
0	75-150	150-225
0	125	250
	0 0 0	 0 50 0 80-125 0 75-150

	/ L	TH, 1	b/a:	1958	83 E	THE PARTY OF THE PERSON NAMED IN COLUMN 1	125
	75	ō	75		0 +	75	0 +
REP ①	150	75	150		225	150	75
	0	225	225		150	225	225
	225	150	0		₇ 5_	0	150
	75	135	250		150	125	9 H
	STORESTEE					150	150
3	225	Lis	150 +		75	552	75
	150	75	75		0	75	0
	6	0	225		115	0	225

AND THE PROPERTY OF THE PROPER

Long-term N and lime treatment effects on total nitrogen and carbon in soil*

N rate	Lime	Total N	Total C
lb/acre		%	о́
O	yes	0.158	1.792
0	no	0.160	1.818
125	yes	0.202	2.297
125	no	0.187	2.058
250	yes	0.193	2.175
250	no	0.198	2.129

^{*} Measured in 1997. Soil organic matter = 50-58% C

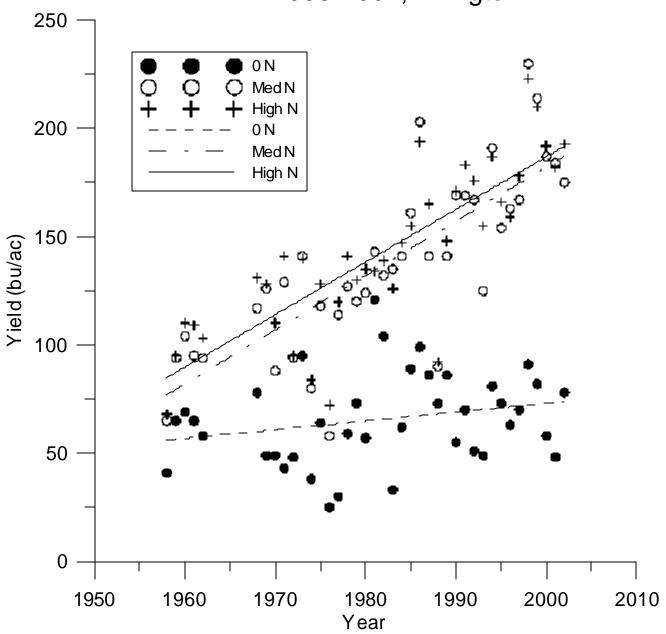
Effects of long-term N rates and lime on soil pH and CEC in continuous corn, 1999.

Location	N rate	Lime	рН	CEC
	lb/a			cmol(+)/kg
Arlington	0	No	5.64	17.78
	0	Yes	6.50	19.18
	250	No	4.91	14.19
	250	Yes	6.28	21.45

Effect of long-term N rate and lime treatments on corn grain yield, Arlington, WI, 1985 to 2002.

Long-term	Lime			
N rate	Without With		Mean	
	Grai	n yield, bu/a	acre	
None	63	73	68 b	
Medium	163	169	166 a	
High	<u>165</u>	<u>175</u>	169 a	
Mean	130 b	139 a		

Effects of long-term N rates and lime on corn yields in the Arlington experiment, 1985-2002


Treatment	Yield effect
N rate (N)	Increase 18 of 18 yr.
Lime (L)	Increase 12 of 18 yr.
NxL	Effect 4 of 18 yr.

Corn yields for several periods in long-term N experiment (1958-2002), Arlington, WI

	Long term N rate			
Year	None	Medium	High	
		Yield, bu/acre		
1958-1962	60	90	97	
1968-1977	52	107	115	
1978-1987	78	148	153	
1988-1998	65	156	162	
1999-2002	60	188	186	

^{*} Yields are means of limed and unlimed treatments

Continuous corn grain yields with three long-term N fertilizer rates, 1958-2002, Arlington WI.

- Long-term N fertilizer use in continuous corn production increased soil organic C and N content and N availability
- Soil pH and CEC decreased in unlimed, N-fertilized treatments, but increased where recommended lime applications were made

- Corn yields were increased by applied N each year and were usually increased by liming.
- Lime and N treatments usually influenced yield independently.

- Corn yields increased dramatically over time with long-term N fertilizer additions.
- Results provide no indication of a decline in productivity after 45 years of N fertilizer use in continuous corn production.

- Yields increased over time with added N
- Soil pH and CEC decreased without lime
- Soil organic C and N increased with added N
- Excess N partly immobilized in organic matter
- Higher N availability (mineralization) in N fertilized treatments

Nitrogen Recommendations for Corn

	Sands & loa	amy sand	Other soils			
			Yield F	Potential		
Organic Matter	Irrigated	Non- irrigated	Med/low	V. high/ high		
%	lb N/acre					
<2	200	120	150	180		
2-9.9	160	110	120	160		
10-20	120	100	90	120		
>20	80	80	80	80		

