

Current Wisconsin Mn Recommendations

- Current University of Wisconsin nutrient application guidelines for Mn are based on research conducted in the early 1970's (Randall et al., 1975)
 - Soils with OM ≤ 6.0% a soil test for Mn coupled with the relative crop need for Mn should be considered to determine fertilizer Mn needs
 - Crops with a high relative need for Mn, like soybean, grown on soils with OM > 6.0%, starter fertilizer containing Mn or foliar Mn application is recommended
- On soils with moderate to severe Mn deficiency, 4.5 to 10 lb Mn/a as MnSO4 in starter fertilizer was suggested
- If Mn deficiency appeared late, then a foliar Mn application could be made

Conditions resulting in Mn deficiency

- Low Mn availability
 - high pH (6.5 and above)
 - bacterial oxidation
 - OM (≥6%)
 - ↓ Exchangeable Mn

- Low Mn supply
 - poorly drained soils
 - MnO → Mn⁺⁺
 - sandy soils

C. Camberato, Purdue University

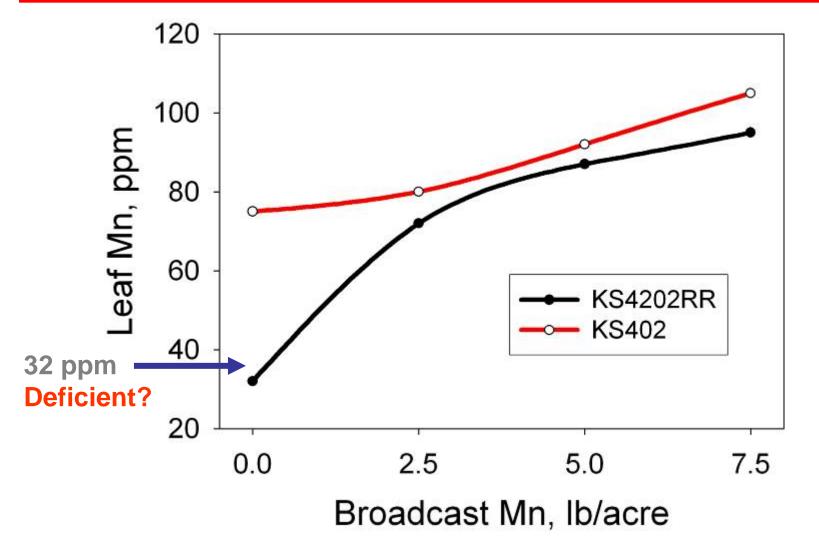
Soybean leaf Mn levels

Def.	Low	Suff.	High
	tissue	(ppm)	
<15	15-20	21-100	101-250

Most recently mature trifoliate at first flower. Shulte and Kelling, 1999.

Soil-test Mn needed for sufficiency in *mineral* soils

Soil pH	Soil-test Mn lb/acre
6.3	.9
6.6	.14
6.9	.19
7.2	.25
7.5	.30


Soil test Mn – 0.1 N HCl

Soil-test Mn needed for sufficiency in *organic* soils

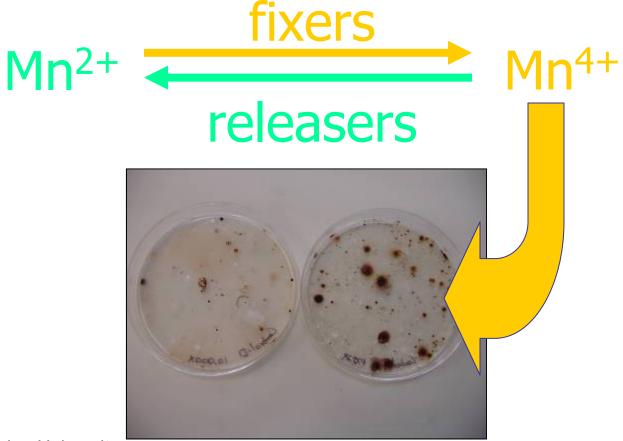
Soil pH	Soil-test Mn lb/acre
5.8	.8
6.1	.17
6.4	.25
6.7	.33
7.0	.41

Soil test Mn - 0.1 N HCl

Do Mn tissue guidelines apply to glyph.-resistant soybeans

Dr. Barney Gordon, KSU-2005 – uppermost expanded trifoliate at full bloom

Non-target effects of glyphosate


- Soil microflora change Root exudates
 - Glyph. and/or decomposition products toxic to manganese releasing bacteria, enhance fixers
- Lower Mn uptake efficiency of glyp.tolerant crops
 - Root & foliage

Mn releasing/fixing bacteria in the soybean rhizosphere soil 3 wk after glyphosate

Glyphosate	Mn releasing organisms	Mn fixing organisms			
, ,	Colonies per	gram of soil			
NO	7,250	750			
YES	740	13,250			

Bacteria affect Mn availability

 Bacteria convert available Mn²⁺ to unavailable Mn⁴⁺

Mn-glyphosate interactions

- Immobilization of Mn by glyphosate
 - Translocation
 - Physiological efficiency
- Tissue nutrient conc. do not necessarily reflect severity of deficiency
- Efficacy of the glyphosate as herbicide reduced

Effects of Mn Applied with Starter Fertilizer and Foliar Mn on Soybean

- Soybean 'Beck's 321NRR' was planted on May 10th
- Row spacing 30" @ 145,000 seeds/acre

#	Starter fertilizer	Starter Mn	Foliar
1	None	None	None
2	10-34-0 at 10 gal/acre	None	None
3	10-34-0 at 10 gal/acre	DDP at 8 oz/acre	None
4	10-34-0 at 10 gal/acre	DDP at 8 oz/acre	DDP at 3 oz/acre with glyphosate
5	None	None	DDP at 3 oz/acre 10 d after glyphosate

- Individual treatment plots were 4 rows wide and 91 feet long.
- Each treatment was replicated six times in a RCBD

Data Collected

- Visual ratings of canopy greenness and growth on a scale of 1-5 were made June 15 and 22 and July 5
 - Greenness was rated 1=totally chlorotic and 5=dark green
 - Growth was rated on a relative basis with 1=least and 5=greatest canopy growth
- Two indices proportional to plant biomass were calculated from the reflectance data:
 - Simple ratio (SR = NIR/VIS)
 - Normalized difference vegetative index [NDVI = (NIR VIS)/(NIR + VIS)].
 - (Crop Circle ACS-210 Plant Canopy Reflectance Sensor)

O.M. [†]	Mehlich-3 extractable nutrients								CEC [¶]				
	Bray-P [‡]	K	Mg	Ca	S	Zn	Mn	Fe	Cu	В	pН	bpH §	
%	ppm										meq/100g		
5.1	30	192	765	2600	9	5.7	12	83	1.6	0.7	6.5	6.0	22.2
Rating	Н	Н	VH	M	M	Н	L	VH	Н	M	6.5	6.8	22.3

[†] Soil organic matter.

[‡] Soil P is converted to Bray-P1 equivalence.

[§] Buffer pH.

[¶] Cation exchange capacity.

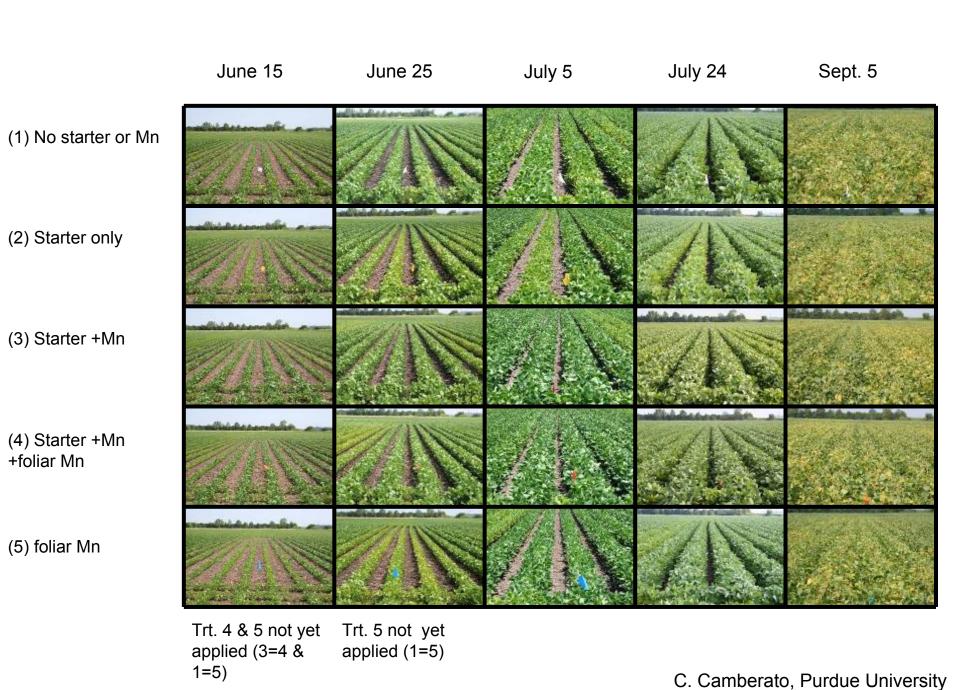
Effect of starter fertilizer and starter Mn on the nutrient concentration of the most recently fully expanded trifoliate

 Leaf tissue samples were taken 21 days after application (R1) of glyphosate to all treatments and application of foliar Mn (3 oz/a of Mn-DDP with glyphosate) to treatment 4 and 11 days after application of foliar Mn (3 oz/a of Mn-DDP) to treatment 5.

Treatment	N	P	K	Ca	Mg	S	Mn	Zn	Cu	Fe	В
			%-					M	lg kg ⁻¹		
(1) no starter or Mn	4.31	0.39	3.14	0.91	0.36	0.25	14	34	9	115	34
(2) starter only	4.32	0.39	3.09	0.92	0.36	0.25	14	35	9	115	35
(3) starter +Mn	4.12	0.38	2.99	0.87	0.36	0.23	15	33	8	106	33
(4) starter +Mn +foliar Mn	4.10	0.40	3.08	0.85	0.35	0.23	15	33	8	101	34
(5) foliar Mn	4.07	0.33	2.98	0.87	0.37	0.23	16	33	9	116	32

C. Camberato, Purdue University

Results: Soybean Growth and Canopy Response

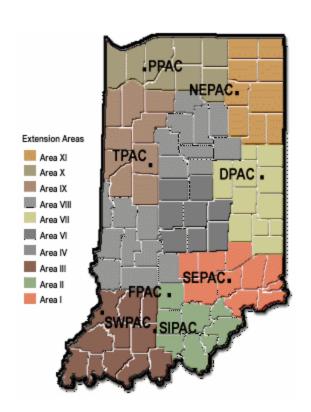

Tractment	Jun	e 15	Jun	July 5	
Treatment	Color	Growth	Color	Growth	Color
(1) no starter or Mn	2.8	2.8	3.5	4.0	3.5
(2) starter only	3.1	3.8	3.5	4.3	3.5
(3) starter +Mn	4.0	4.1	4.5	4.7	4.3
(4) starter +Mn +foliar Mn	4.0	4.3	4.7	5.0	4.7
(5) foliar Mn	2.8	3.3	3.0	3.8	4.5
Source of variation		Level	of signif	icance	
Treatment	0.006	0.0001	0.0007	0.002	0.05

C. Camberato, Purdue University

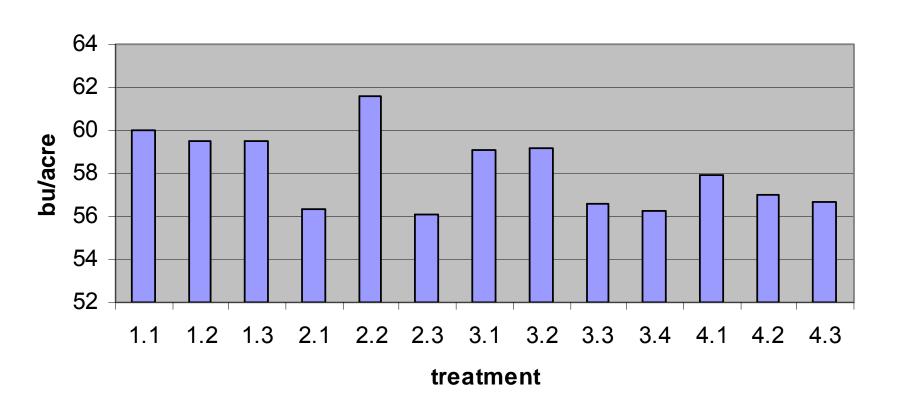
Results: Simple Ratio and NDVI

Tuestresent	Jun	e 15	Jun	e 22	July 5		
Treatment	SR	NDVI	SR	NDVI	SR	NDVI	
1 no starter or Mn	3.6	0.56	5.0	0.66	7.2	0.75	
2 starter only	3.9	0.58	5.1	0.66	6.9	0.74	
3 starter +Mn	4.2	0.61	5.6	0.69	7.6	0.77	
4 starter +Mn +foliar Mn	4.4	0.62	5.8	0.70	7.7	0.77	
5 foliar Mn	3.7	0.56	4.7	0.64	7.7	0.77	
Source of variation			Level of si	ignificance			
Treatment	<0.0001	<0.0001	<0.0001	<0.0001	0.10	0.06	

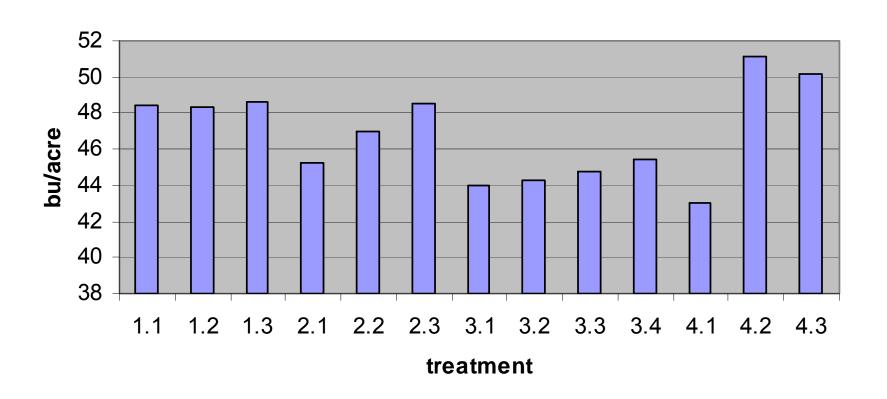
C. Camberato, Purdue University

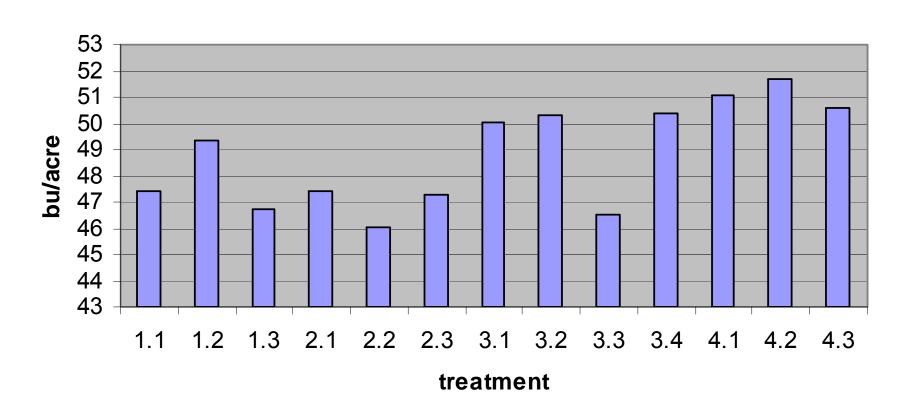


Results: Simple Ratio and NDVI


Tuo otano orat	Grain yield	Harvest moisture
Treatment	Bu/acre	%
(1) no starter or Mn	52.2	14.9
(2) starter only	52.7	15.2
(3) starter +Mn	58.0	15.0
(4) starter +Mn +foliar Mn	61.5	17.0
(5) foliar Mn	56.4	17.0
Source of variation	Level of	f significance
Treatment	0.003	0.92

C. Camberato, Purdue University


- RCB split-plot design with six replications
- Three locations across northern IN
- Row spacing 30" @ 145,000 seeds/acre
- Individual treatment plots were 20 by 70 feet
- Main affect
 - No glyphosate control
 - Glyphosate burndown only
 - Burndown + single post
 - Burndown + double post
- Sub-plot affect
 - Control
 - Mn @ 2.5 lbs/acre
 - Mn @ 5.0 lbs/acre
 - Foliar Mn for Main Trmt 3 only. Mn chelate @ 0.5 lb/acre


PPAC (first 4 reps)

White

Rice

Mn antagonism of glyphosate efficacy

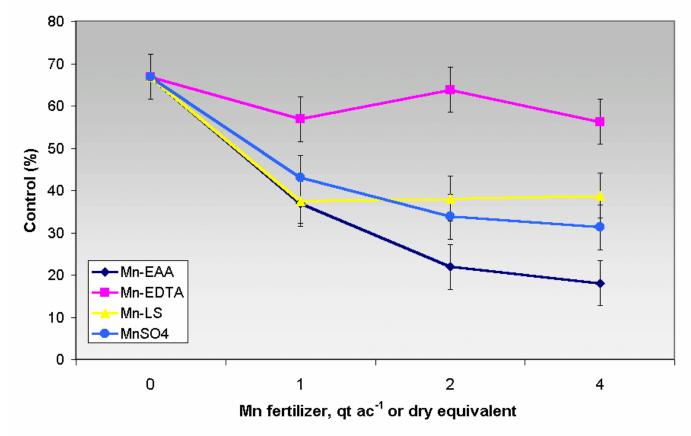


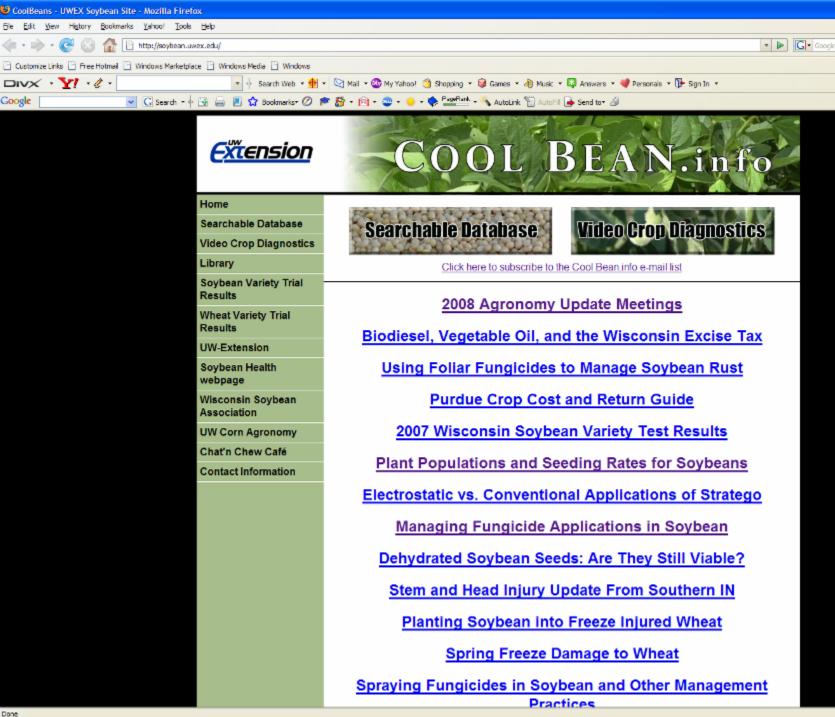
Figure 4. Velvetleaf control 14 days after treatment with glyphosate-Mn fertilizer tankmixes at three Mn fertilizer concentrations. "0" is efficacy of glyphosate without Mn. Data represent the averages of +/- AMS treatments. Error bars represent the standard error, p=0.05.

Bernards et al., 2003

Mn/glyphosate antagonism

- Sulfate, ethylaminoacetate, lignosulfonate, but not EDTA, antagonized Roundup Ultra/Ultramax (Bernards, Thelen & Penner, MI, 2002)
- Mn-EDTA antagonized Roundup WeatherMAX

AMS overcomes antagonism in LS but not totally in EAA or sulfate


Mn/glyphosate antagonism

 Lignosulfonate and glucoheptonate antagonized Roundup Ultra or Touchdown (Bailey, Poston, Wilson & Hines, VA, 2002)

 Mn-ethylaminoacetate but not Mn-EDTA antagonized Roundup WeatherMAX (Li, Wait & Bradley, MO, 2004)

Glyphosate-resistant corn may impact soybeans in rotation?

- Tissue Mn of RR corn 45 ppm lower than isoline (Beck's 5727)
- Application of glyphosate to soybean affects take-all in next wheat crop (Mn deficiency associated with take-all)
- More total applications of glyphosate likely to have cumulative effects on soil bacteria

