
Nitrogen Availability From Dairy Manure

Cusick, P.R., J.M. Powell, K.A. Kelling, G.R. Muňoz, and R.F. Hensler Dairy Forage Research Center USDA-ARS

Increased knowledge is needed

Objectives

- ★Better understanding of manure N
 cycling
- *Create accurate manure N availability estimates (first year and residual)
- Reduce N losses into the environment

3 Experiments

- **★ Field trial**
 - Availability of dairy manure N
- ***** Litterbag
 - N mineralization of dairy manure in field environment
- **★ Incubation trial**
 - •Nitrogen mineralization of urine, feces and bedding in controlled environment

Field Trial

- * West Madison ARS, Madison, WI
- * Plano silt loam
- Established 1998 and concluded 2003
- Corn (Zea mays L. C v Lemke 6063)
- Random complete strip block design
- Treatments replicated 4x

Field Trial: Treatments

- •Fertilizer (NH₄NO₃)
 - 0,40,80,120,160, and 200 lb N acre-1
 - Applied every year
- Manure
 - \approx 80,160 lb N acre⁻¹ available in first year
 - Applied every 1, 2, or 3 years

Methodologies:

- ^{★ 15}N Method
 - Recovery of enriched isotope levels
- * Apparent Recovery
 - Compares treatment uptake of N to the control uptake
- * Fertilizer Equivalence Method
 - Compares manurial N uptake responses from where a similar response is obtained from a fertilizer N treatment

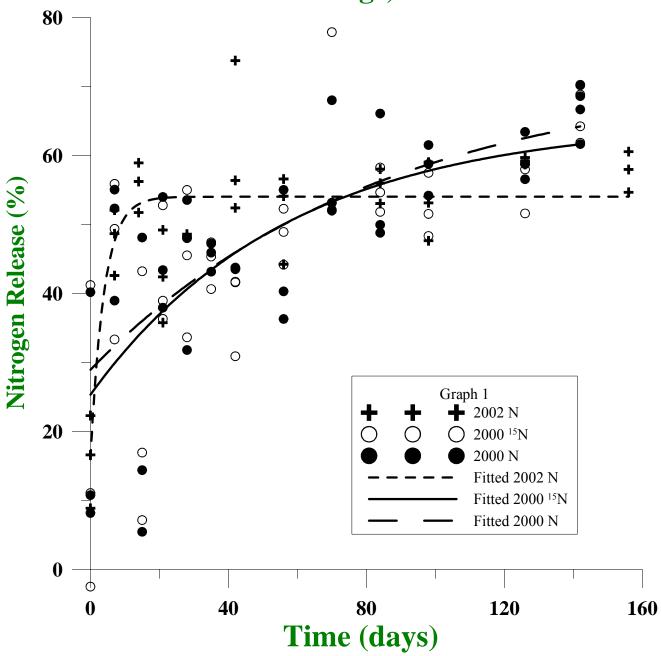
Estimates of first-, second-, and third-year manure N availability using various methods.

Manure N availability	n†	15N Recovery	Apparent Recovery			
		⁰ / ₀				
1st year	6	17 (3.1) ‡	14 (4.7)	25 (10.5) §		
2 nd year	5	6 (1.1)	8 (6.6)	12 (7.9) §		
3 rd year	4	2 (0.4)	1 (5.8)	3 (9.4) §		
† no. of measurement years in parentheses; 4 reps/year						
‡ Average (standard error)						

§ Data from 2002 excluded.

Litterbags

- *In situ method to determine manure N mineralization
- ★Determine when manure N is becoming available for the crop
- In conjunction with field trial


Litterbags

- ★Mesh bags (3.7 x 7.1 cm, 38µm)
- **Filled with urine (42%), feces (36%) and bedding (22%) based on total N
- Components ¹⁵N labeled in 2000

Litterbags

- ★ Bags buried to a depth of 3 inches, 6 inches to the side of a corn row, spaced 9.8 inches apart
- **★**Sampled: 0, 7, 14, 21, 28, 42, 56, 84, 98, 126 days and at whole plant harvest
- Control bag frozen, not buried
- **Analyzed for total N (total ¹⁵N in 2000)

Measured and fitted data for N release from litterbags, 2000 and 2002.

Incubation Trial

- ★ N mineralization of individual dairy manure components using ¹⁵N
 - •Feces, urine, bedding labeled individually
- Soil type and temperature effect on N mineralization
 - •3 temps (52, 64, and 77 °F)
- **₹** 5 treatments utilizing ¹⁵N labeling

Incubation Trial

- *2 qt canning jars
- ≈250 g soil dry wt.
- **₹60%** Water filled pore space
- *Aerated jars 1 hour each day
- ★Incubated for 168 days

Treatment	Feces	Urine	Bedding
1	15N	14N	14N
2	14N	15N	^{14}N
3	14N	14N	15N
4	15N	15N	15N
5	Control	(no manur	e applied)

Rate: 312 lb N acre⁻¹ in which 36% came from feces, 42% from urine and 22% from bedding

Analysis

Samples were taken at 14, 21, 42, 84, and 168 days

*Analyzed for unlabeled NH₄⁺ and NO₃⁻

★ Samples from day 168 were analyzed for Total and Mineralized ¹⁵N

Mineralized ¹⁵N recovered from various labeled manure components over all temperatures at day 168.

Temp (°F)	Urine	Feces	Bedding	All components		
	% of applied ¹⁵ N					
52	44	13	15	24		
64	60	18	24	30		
77	63	26	25	36		

Overall Conclusion

- ** ¹⁵N greatly reduced variability of estimates for residual availability
- Estimates for first year and residual dairy N availability generally match UW-Extension recommendations.
- Conservation of urine N is the key to greatest manurial benefit