Foliar Fungicides for Corn

Paul Esker, Craig Grau, and Bryan Jensen
Department of Plant Pathology
and Outreach Program Manager-IPM
UW-Madison


2007 - In Review

- Dramatic increase in the use of foliar fungicides on corn across the Corn Belt (next slide)
 - "Plant Health"
 - Ranges:
 - 175,000 200,000 acres (Missouri)
 - 3 4 million acres (Illinois)
- Estimated: ~ 10-15% of corn acres treated
 - 2007 U.S. Corn Production = 93.6 million acres
 - At 10%, approximately 9-10 million acres
 - While fungicide cost is variable, at \$20/acre (application + product) = \$180-200 million dollars

Estimated Acres Receiving Fungicide Applications

Marcia McMullen Tamra Jackson Dean Malvick Alison Robertson Paul Esker Pierce Paul Carl Bradley Greg Shaner Paul Vincelli Laura Sweets Doug Jardine

2007 University Fungicide Trials

- Data collected and shared by Carl Bradley, University of Illinois
- Trial data obtained from:
 - Illinois, Indiana, Iowa, Kansas, Kentucky,
 Maryland, Minnesota, Missouri, Nebraska, North
 Dakota, Ohio, Ontario, Wisconsin
 - Total of 168 trials
 - 89 with Headline, 6 fl oz/A
 - 37 with Quilt, 14 fl oz/A
 - 42 with Stratego, 10 fl oz/A

Product Details - Pyraclostrobin

- Headline® (BASF)
- FRAC Group 11
- Check label regarding ground versus aerially applied recommendations
- Control of Diseases:
 - Common rust, Southern rust, Gray leaf spot: 6 to 9 fl oz/A
 - Anthracnose, Northern corn leaf blight, Northern corn leaf spot: 9 to 12 fl oz/A
- Restrictions:
 - Do not apply within 7 days of harvest
 - Do not exceed 72 fl oz/A or make > 2 applications per season

Learning for life

Product Details -Azoxystrobin and Propiconazole

- Quilt[®] (Syngenta)
- FRAC Group 3, 11
- Check label regarding ground versus aerially applied recommendations
- Control of Disease:
 - Northern corn leaf blight, Northern corn leaf spot, Rusts, Gray leaf spot, Eyespot: 7-14 fl oz/A

Restrictions:

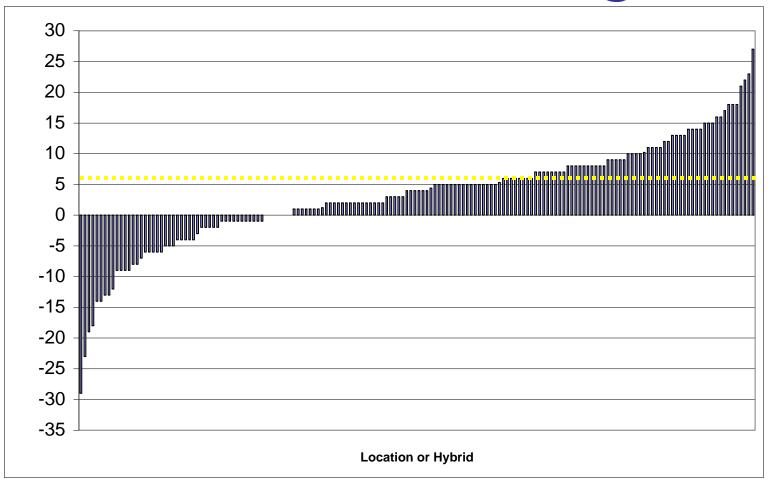
- Do not apply within 30 days of harvest
- Do not apply > 56 fl oz/A per season
- Do not apply > 28 fl oz (0.224 lb a.i. propiconazole) for corn harvested for silage

Product Details Propiconazole and Trifloxystrobin

- Stratego® (Bayer CropScience)
- FRAC Group 3, 11
- Timing: Between V4 to after silking
- Control of Diseases:
 - Rust: 7-10 fl oz/A
 - Eye spot, Gray leaf spot, and Helminthosporium leaf blights: 10-12 fl oz/A

Restrictions:

- Do not apply > 36 fl oz/A per crop
- Do not apply to field corn and field corn grown for seed after silking
- Do not graze or harvest for forage within 30 days of application



Trial Requirements and Economic Assumptions

- Trial types: mixture of on-farm strip and smallplot trials
- Minimum number of replications per location: 3
- Majority ground-applied (three trials aerially applied)
- Fungicide applications between VT and R1
 - Not all products used in every trial
- Data represents unique location or unique hybrid
- Economic assumptions for analysis:
 - Fungicide treatment = \$20/A
 - Market price = \$3.50/bu
 - Breakeven point = 6 bu/A

Combined Trials for Headline, Quilt, and Stratego

63 out of 168 = 38% of the time had a yield increase of 6 bu/A or greater.

Mean = 3 bu/A increase over the untreated

Headline

 Yield range (+/- to untreated check): -18 to +23 bu/A

 Trials: 44% (39 of 89) trials had yield increase of 6 bu/A or greater

 States/Province: Illinois, Iowa, Kentucky, Maryland, Minnesota, Nebraska, North Dakota, Ohio, Ontario (Canada)

Quilt

Yield range (+/- to untreated check):
 -23 to +27 bu/A

 Trials: 35% (13 of 37) had yield increase of 6 bu/A or greater

 States: Illinois, Indiana, Iowa, Nebraska, Wisconsin

Stratego

Range (+/- to untreated check):
-29 to +18 bu/A

 Trials: 26% (11 of 42) had yield increase of 6 bu/A or greater

States: Illinois, Iowa, Kansas, Nebraska

Gray Leaf Spot (GLS)

- Cercospora zeae-maydis
- Yield losses can range from 5 to 40 bu/A
 - Even total field losses reported
- Increased under reduced and no-tillage systems
- Early infection = higher yield loss
- Environment:
 - High humidity (leaf wetness)
 - Warm temperatures

Role of Resistance (GLS)

- Hybrids rated as "fair-to-poor":
 - 52% of trials (16 of 31) had an increase of 6
 bu/A or more
 - Mean increase = 6 bu/A (breakeven point)
- Hybrids rated as "good-to-excellent":
 - 39% of trials (47 of 121) had an increase of 6
 bu/A or more
 - Mean increase = 3 bu/A

Effect of Previous Crop

- Assumption: corn-following-corn leads to increased disease pressure
- Previous crop = corn
 - Range: -29 to +22 bu/A
 - 28% (19 of 68) had yield increase of 6 bu/A or greater
 - Mean = 1 bu/A
- Previous crop = soybean, sugarbeet, or wheat
 - Range: -5 to +27 bu/A
 - 41% (21 of 51) had yield increase of 6 bu/A or greater
 - Mean = 5 bu/A
- Other factors Tillage? Previous disease pressure?
 Insects? Bt versus non-Bt? Fertility?

Learning for life

Fungicides Using an IPM Approach

- Consideration of Multiple Factors:
 - Knowledge of corn hybrid susceptibility
 - Disease pressure at or around VT?
 - Arkansas, 2007 (Scott Monfort, Personal Communication)
 - Applications weeks ahead of Southern rust
 - Previous cropping history
- Decision to apply good farming practices:
 - Follow label recommendations for rates, timing and use of adjuvant
 - Mix and alternate different modes of action
 - Economics?

Resistance Management

- FRAC (<u>www.frac.info</u>) = Fungicide Resistance Action Committee
 - Works to reduce the risk of fungicide resistance through identifying potential problems, recommending methods for research studies, and information delivery through open collaboration across all levels from farm to market
- Group 3: DMI-fungicides, Medium risk
- Group 11: QoI-fungicides (Strobilurins), High risk
- All products discussed, labels have recommendations regarding application amount and frequency per season

Learning for life

Timing and Application Methods

Does it Pay -Breakeven Points

Application	Fungicide	Corn market value (\$/bu)				
Cost	Cost	2	2.5	3	3.5	4
6	10	8.0	6.4	5.3	4.6	4.0
	15	10.5	8.4	7.0	6.0	5.3
	lan 9	CROTI	Price = \$	4 65/bii	(Open)	6.5
	Jan. 0,	CBUT	$FIICE = \varphi$	4.05/DU	(Open)	7.8
8	At \$45/some for functional 2.2 but					4.5
	At \$15/acre for fungicide = 3.2 bu					5.8
					7.0	
At \$20/acre for fungicide = 4.3 bu						8.3
10						5.0
	At \$25/a	acre fo	r fungici	de = 5.4	bu	6.3
	20	15.0	12.0	10.0	0.0	7.5
	25	17.5	14.0	11.7	10.0	8.8
12	10	11.0	8.8	7.3	6.3	5.5
	15	13.5	10.8	9.0	7.7	6.8
	20	16.0	12.8	10.7	9.1	8.0
	25	18.5	14.8	12.3	10.6	9.3

Summary

- Profitability for using a foliar fungicide was variable across the Corn Belt
 - Numerous factors involved
- To spray or not to spray? Consider:
 - Hybrid susceptibility, and to which diseases
 - Crop rotation
 - Growth stage
 - Application timing
 - Application method

Further Information

Boerboom, C., Cullen, E., Esker, P.,
 Flashinski, R., Grau, C., Jensen, B., Renz, M.
 2007. Pest Management in Wisconsin Field
 Crops-2008, UW-Extension (A3646)

Acknowledgements

- Gary Munkvold, Iowa State University
- Carl Bradley, University of Illinois