WINTER WHEAT SEED TREATMENTS for WISCONSIN

Dr. R. Borges and J. Gaska
UW Madison Department of Agronomy

Management Practices

- Cultivar: Hopewell
- Row Spacing: 7.5"
- Planting:
 - ✓ Date: Sept. 24, 2002
 - ✓ Rate: 1.5 million seeds/acre
 - ✓ Depth: 1"
- Fertilizer: 60 lb N/a spring applied
- Herbicides: None
- Harvesting date: July 31, 2003

Products Tested

Insecticides:

- ✓ Gaucho 480
- ✓ Gaucho XT (Insect/fung)
- ✓ Cruiser

Fungicides:

- **√** Raxil-Thiram
- ✓ Raxil MD
- ✓ Raxil MD Extra
- √Vitavax 200
- **✓ Dividend Extreme**
- ✓ Dividend XL

Popular Seed Applied Fungicides in WI

Raxil/Thiram

- ✓ Tebuconazole and thiram
- ✓ popular
- ✓ broad spectrum, low cost
- √ 3.5 to 4.6 oz/cwt
- ✓ Raxil-systemic, Thiram surface action
 - Strengths:
 - Excellent on seed borne bunt and smuts
 - Protection against Fusarium spp. scabby seed

Raxil MD

- ✓ Tebuconazole and metalaxyl
- ✓ Systemic
- ✓ 5.0-6.5 oz/100 lbs
 - Strengths:
 - Excellent on seed borne bunt and smuts, Pythium root rot, Septoria

Popular Seed Applied Fungicides in WI

Raxil MD Extra

- ✓ Tebuconazole, metalaxyl, and Imazalil
- √ Systemic
- √ 5.0oz/100 lbs
 - Strengths:
 - Excellent on seed borne bunt and smuts, Pythium root rot,
 Septoria, adds stripe rust

Vitavax 200

- ✓ Systemic activity of carboxin with the contact activity of thiram
 - Strengths:
 - Good on seed borne bunt and smuts, Pythium root rot

Popular Seed Applied Fungicides in WI

DividendExtreme

- ✓ Difenoconazole (0.77 lb/gal) and Apron XL (0.19 lb/gal)
- √ 2.0 to 4.0 fl. oz/cwt
 - Strengths:
 - Excellent on seed borne bunt and smuts

DividendXL

- ✓ Difenoconazole (1.54 lb/gal) and Apron XL (0.13 lb/gal)
- √ 1.0 to 2.0 fl. oz/cwt
 - Strengths:
 - Excellent on seed borne bunt and smuts

Seed Applied Insecticides

Gaucho 480

- ✓ Imidacloprid
- √ Systemic
- √ 1 to 3 fl oz/cwt
 - Controls aphids which can transmit barley yellow dwarf

Gaucho XT

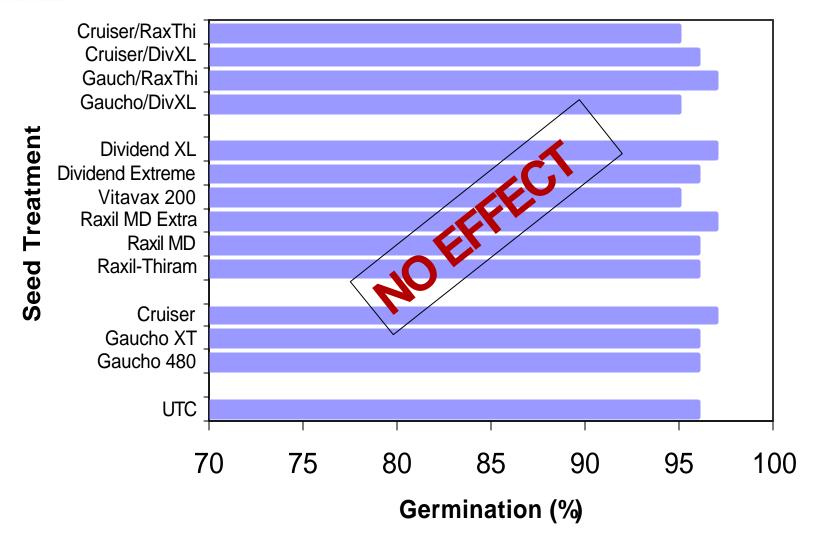
- ✓ Combination insecticide and fungicide
- ✓ Imidacloprid, metalaxyl and tebuconazole
- ✓ 3.4 fl oz/cwt

Economic Cost of Several Seed Treatments

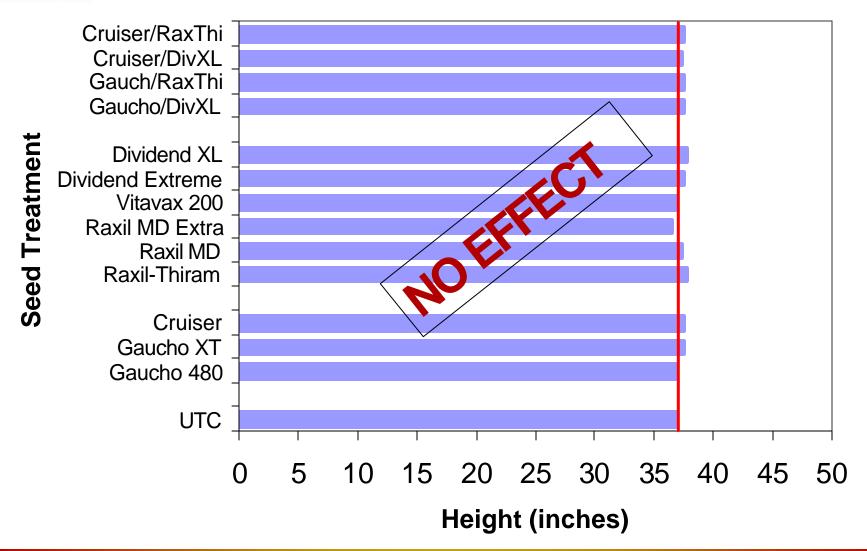
<u>DividendXL</u> <u>RTA</u>

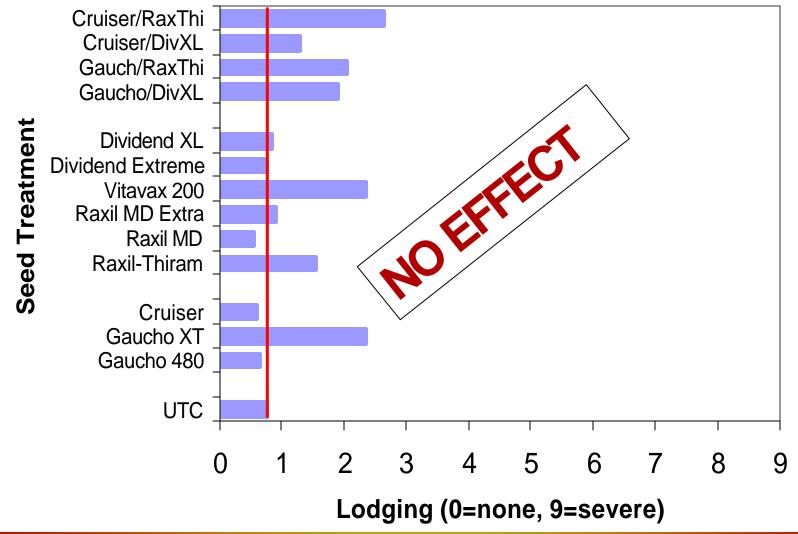
- 10 oz/cwt
- 150 lb/a seed rate
- \$55/gallon
- \$6.50/acre
- \$2.58/60 lbs

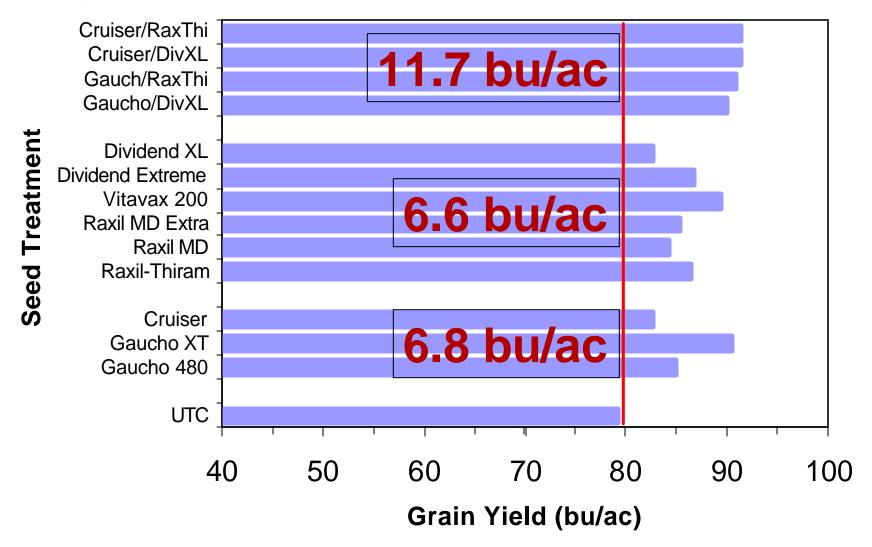
Gaucho 480 insecticide

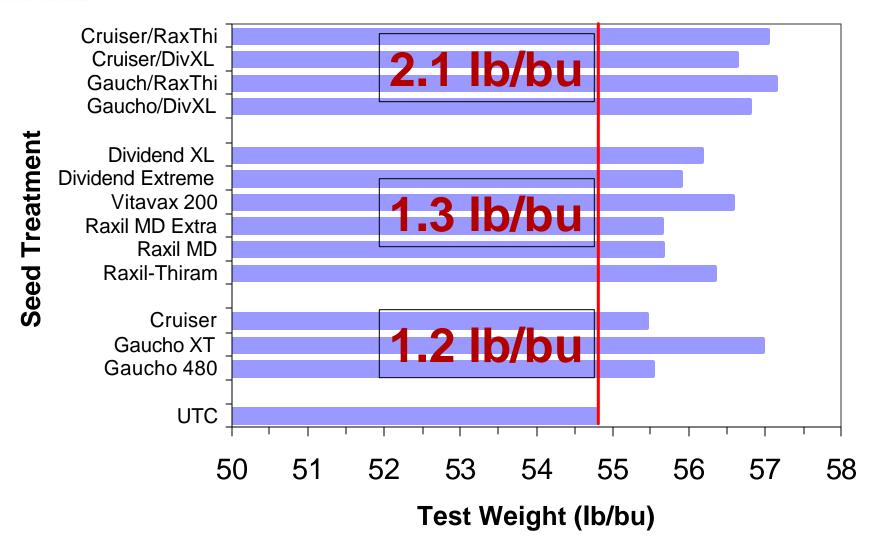

- 1 to 3 oz/cwt
- 150 lb/a seed rate
- \$1100/gallon
- \$13 to\$26/acre
- \$5.16/60 lbs

Germination Rate




Height at Maturity


Lodging (Belgium System 0-9)


Grain Yield

Test Weight

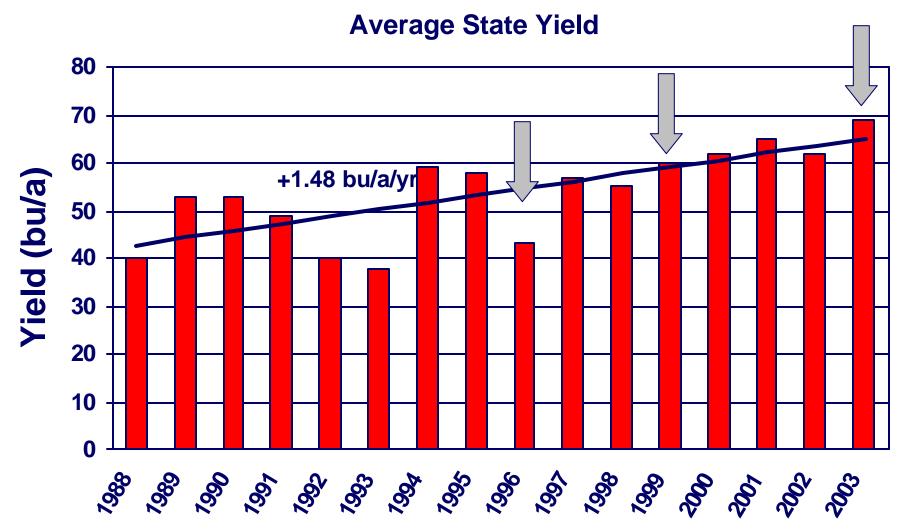
Summary of Wisconsin Winter Wheat Seed Treatment Data

1988 to 2003

Year	1988	1989	1990	1991	1993	1996	1997	1998	1999	2000	2003
Variables	1 env 2 var 3 trts	2 env 2 var 4 trts	1 env 2 var 2 trts	1 env 2 var 9 trts	2 env 26 var 3 trts	2 env 2 var 3 trts	4 env 2 var 3 trts	4 env 2 var 3 trts	4 env 3 var 4 trts	2 env 3 var 3 trts	1 loc 1 var 14 trts
						- bu/ac -					
Check	48.0	62.3	43.2	59.0	51.2	57.4	67.2	49.0	85.0	67.6	79.2
Fungicides	2.3	0.7	-0.4	2.3	-0.6	3.3	0.8	0.5	2.0	1.2	6.6

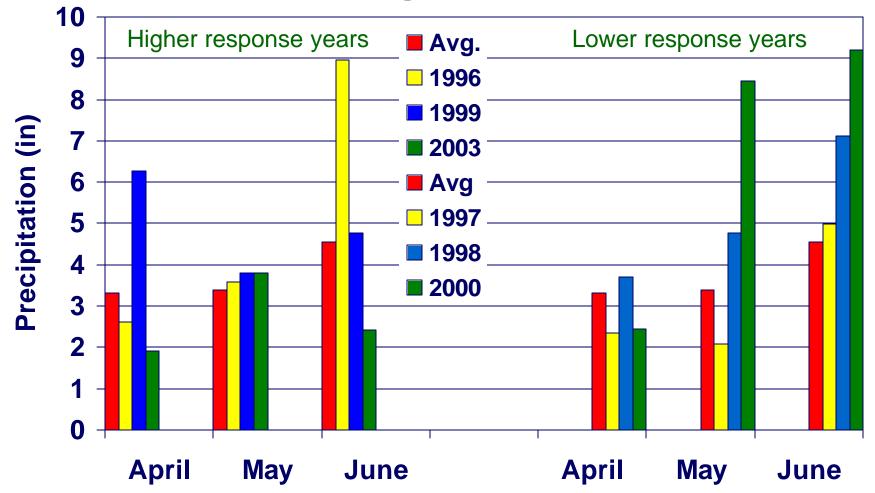
Average over 11 experiments = gain 1.7 bu/ac

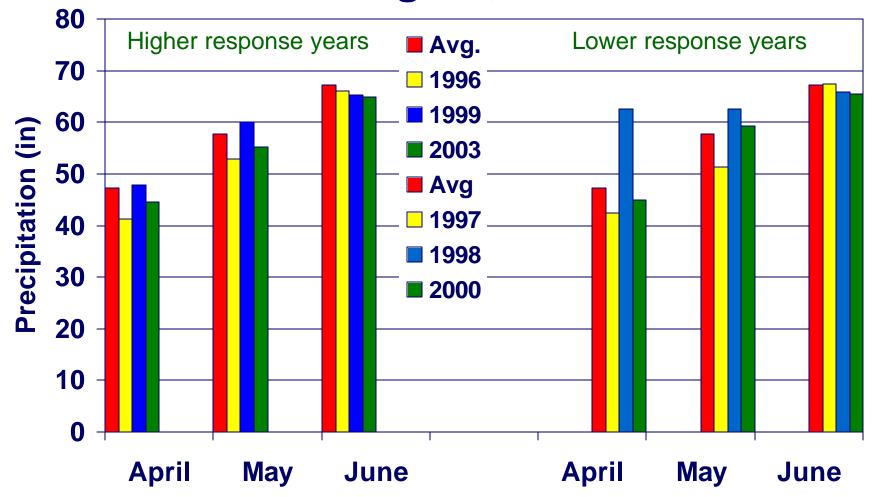
Insecticides 6.8


Fung+Insect

2.6 6.2 11.7 **3-exp avg gain 6.8 bu/ac**

Historic Winter Wheat Yields in WI




Monthly Precipitation Arlington, WI

Monthly Average Temperatures Arlington, WI

Hypothesis of Seed Treatment Effects

Fall Stand Establishment/ Weather	Seed Treatment	Yield Potential into Spring	Spring Weather	Final Yield
	Treated	Higher	Poor	Avg
Poor	Treateu	nighei	Good	Full
Pool	Untreated	Lower	Poor	Poor
	Unifeated	Lower	Good	Avg
	Treated	Lliah	Poor	
Cood	rreated	High	Good	
Good	Untrooted	Lliah	Poor	
	Untreated	High	Good	

Summary of Use of Seed Treatments on Wheat

Advantages

- ✓ Control of early season seedling diseases
- ✓ Useful when seed and seedling are placed under stress.
- ✓ Protect/increase seed viability

Disadvantages

- ✓ Higher seed cost
- ✓ Hard to dispose of unneeded seed
- ✓ Time/cost of treating
- ✓ One seed treatment will not control all pathogens
- ✓ Variable yield response

- Further test the insecticide seed treatment effect on Wisconsin grown winter wheat.
 - √ 2 locations x 2 varieties x 16 treatments
 - √ 4 insecticides, 7 fungicides, and 4 ins+fung

- Further test the insecticide seed treatment effect on Wisconsin grown winter wheat.
 - √ 2 locations x 2 varieties x 16 treatments
 - √ 4 insecticides, 7 fungicides, and 4 ins+fung
- Summarize individual product performance

- Further test the insecticide seed treatment effect on Wisconsin grown winter wheat.
 - √ 2 locations x 2 varieties x 16 treatments
 - √ 4 insecticides, 7 fungicides, and 4 ins+fung
- Summarize individual product performance
- Continuously monitor diseases and insect pest incidence in Wisconsin

- Further test the insecticide seed treatment effect on Wisconsin grown winter wheat.
 - √ 2 locations x 2 varieties x 16 treatments
 - √ 4 insecticides, 7 fungicides, and 4 ins+fung
- Summarize individual product performance
- Continuously monitor diseases and insect pest incidence in Wisconsin
- More integration among the public and private individuals/institutions interested in promoting the Wisconsin wheat industry.

