Managing Insecticide Resistance in Onion Thrips

Wisconsin Fertilizer, Aglime and Pest Management Conference

inemegonalli goro eldisiegev

January 18, 2007

Russell L. Groves

Department of Entomology
University of Wisconsin

1630 Linden Drive

Madison, WI 53706

The problem and the pest...

Onion Thrips Damage


Biological attributes that make onion thrips a pest

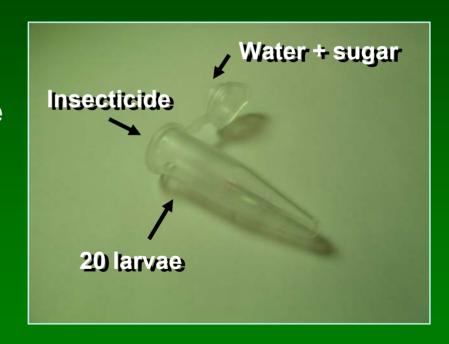
- > Short developmental time
- Parthenogenic (do not need to find a mate)
- > Highly mobile
- Wide host range
- Overwinter adjacent to onion
- Capability of developing resistance to insecticides

Onion thrips resistance to Warrior® λ-cyhalothrin (New York)

2001 TIBS Bioassays among populations

Shelton et al. (2003)

Insecticide Control Failures in Wisconsin are more Frequent Because...?

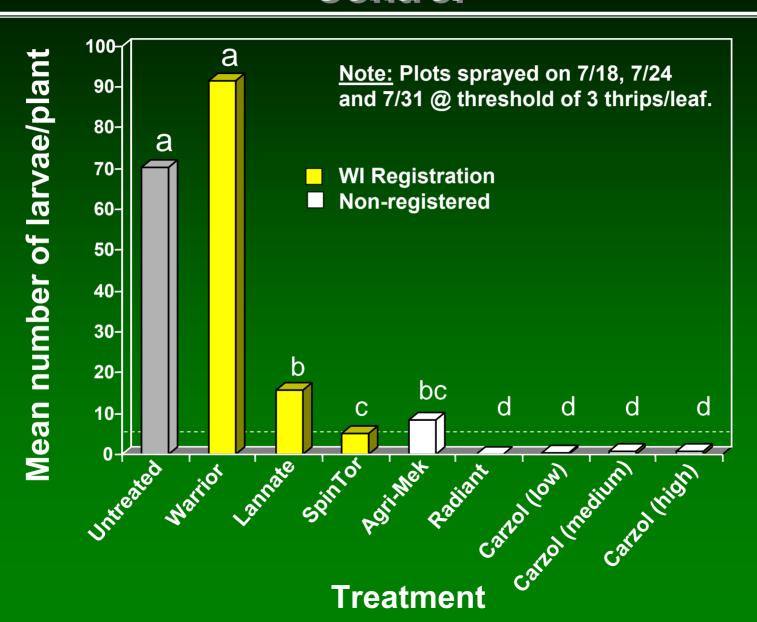

➤ Populations in Wisconsin may be resistant to Warrior®, similar to NY populations.

- ✓ Environmental conditions become hot and dry.
- ✓ Spray coverage may be inadequate.
- ✓ Application threshold adjustments.

TIBS Survey for Insecticide Resistance

Expose thrips to insecticides in the lab to avoid issues such as:

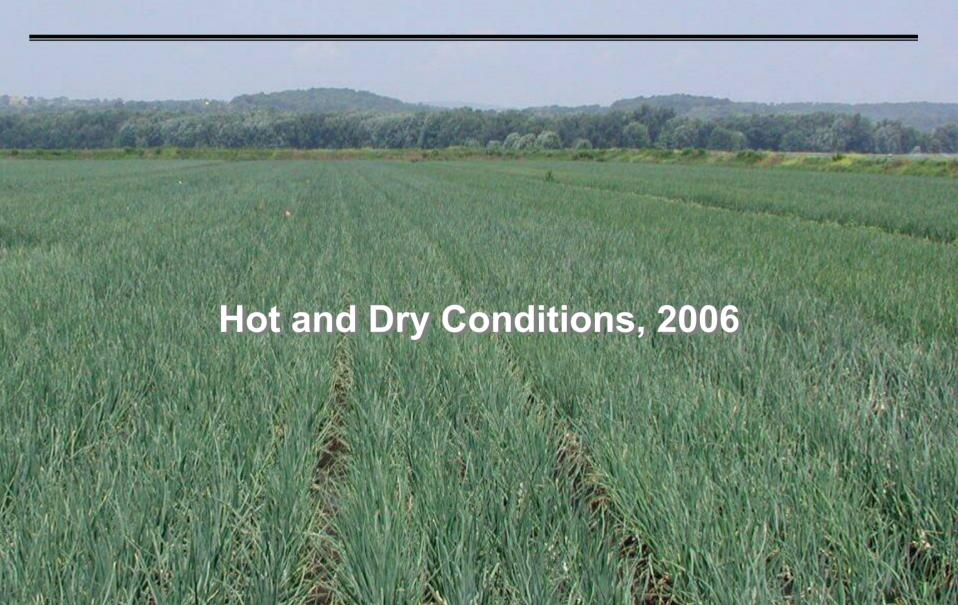
- (1) inadequate spray coverage
- (2) environmental conditions that could affect control


Foliar-Applied Insecticides Evaluated in 2006

Product	Active Ingredient	Rate (amnt/acre)
Warrior	lambda-cyhalothrin	3.8 fl oz
Lannate LV	methomyl	48 fl oz
SpinTor 2SC	spinosad	6 fl oz
*Carzol SP	formetanate hydrocloride	0.75, 1 and 1.5 lbs
Radiant SC	spinetoram	7 fl oz
Agri-Mek 0.15EC	abamectin	10 fl oz

Note: Products highlighted in yellow were labeled on onion in WI in 2006; *Carzol was permitted for use in NY and OR under a Crisis Exemption, and in MI and CO under a Section 18.

Nault (2006) Arth. Mgmt. Tests


Foliar-Applied Insecticides for Onion Thrips Control

Summary Foliar-Applied Insecticides

- Onions were best protected from onion thrips damage using <u>Carzol and Radiant</u>
- SpinTor, Agri-Mek and Lannate provided adequate or nearly adequate levels of protection
- Warrior failed to control thrips
- Highly efficacious insecticides must be registered soon in WI to prevent further thrips outbreaks

Environmental Effects

Onion thrips survival, fecundity, and generation time(s) at varying temperatures

	Days		
Factor	68° F	77 ⁰ F	86° F
Survival	47	25	13
Eggs laid/ female	210	165	63
Generation time	48	30	17

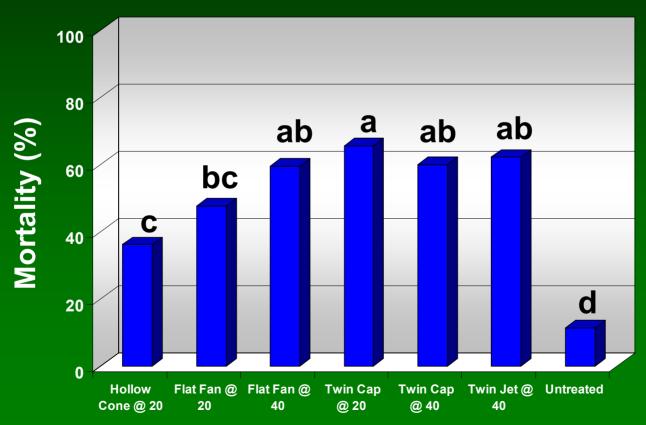
Onion thrips population growth (68°F)

	Number of Females		
Date	68 ⁰ F		
July 1	1		
July 8			
July 15			
July 22			
July 29			
August 5			
August 12			
August 19	210		
August 26			
September 2			
Number generations	1		

Onion thrips population growth (77°F)

	Number of Females		
Date	68 ⁰ F	77 ⁰ F	
July 1	1	1	
July 8			
July 15			
July 22			
July 29		165	
August 5			
August 12			
August 19	210		
August 26			
September 2		27,225	
Number generations	1	2	

Onion thrips population growth (86°F)


	Number of Females		
Date	68 ⁰ F	77° F	86 ⁰ F
July 1	1	1	1
July 8			
July 15			63
July 22			
July 29		165	3,969
August 5			
August 12			250,047
August 19	210		
August 26			15,752,961
September 2		27,225	
Number generations	1	2	4

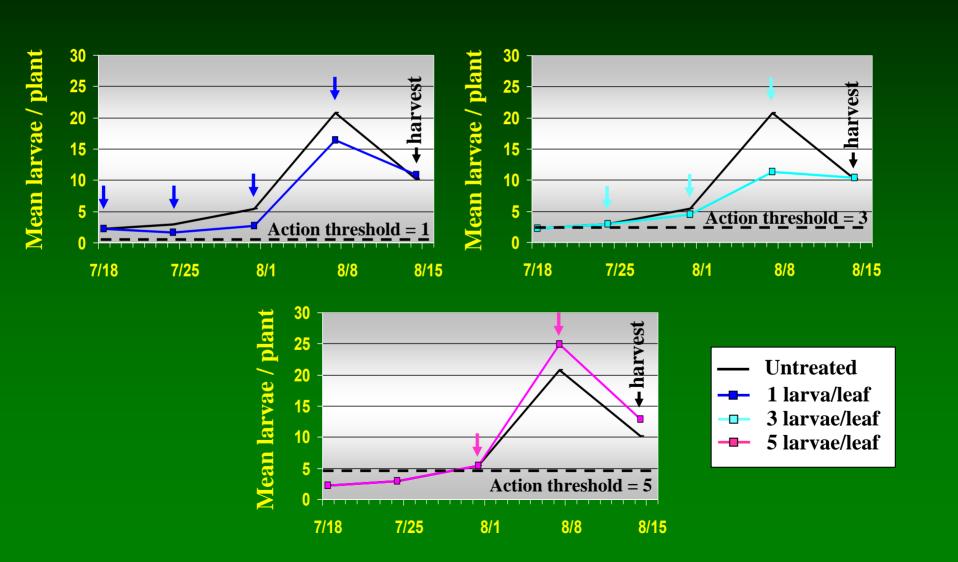
Spray Coverage an Issue??

Spray Nozzles and Gallonage

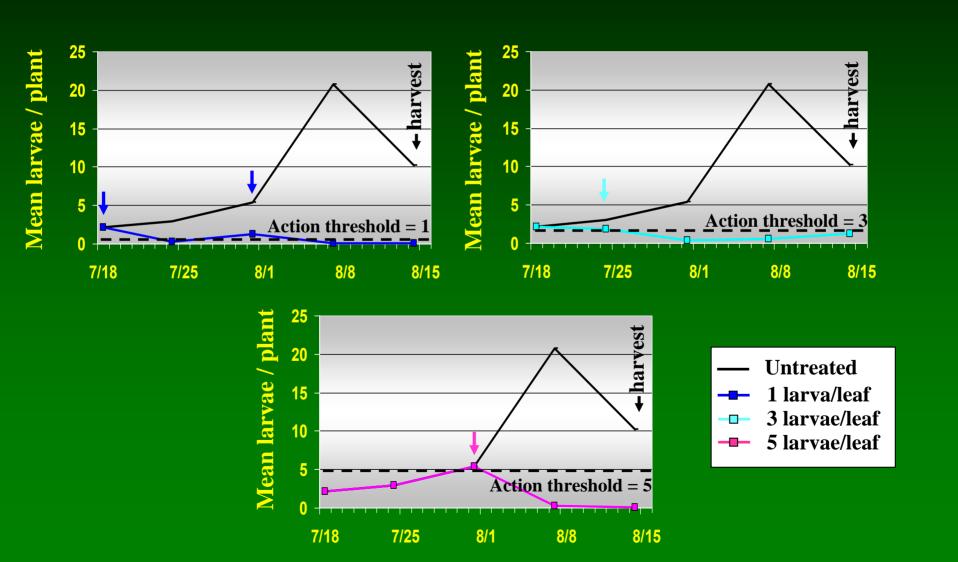
➤ Better coverage of middle and bottom portions of plant using Flat Fan, Twin Caps and Twin Jet nozzles @ 40 gpa.

Nozzle Type @ GPA

Shelton et al. (2003)


Adjusting Action Thresholds??

B. Nault, 2007 Pacific Northwest Vegetable Association Conference & Trade Show


Product	Action Threshold	Rate (amnt/acre)
Warrior	1 larva/leaf	3.8 fl oz
Warrior	* 3 larvae/leaf	
Warrior	5 larvae/leaf	
Carzol SP	1 larva/leaf	0.75 lb
Carzol SP	* 3 larvae/leaf	
Carzol SP	5 larvae/leaf	

^{*} Current onion thrips management action threshold, Michigan State University

Onion Thrips Control using Warrior® at 3 action thresholds

Onion Thrips Control using Carzol SP® at 3 action thresholds

Action Thresholds Summary

- Combination of insecticide product and action threshold used to time sprays affects control
- Warrior failed, regardless of the action threshold
- Carzol sprayed at 1 and 3 thrips/leaf provided excellent control; *only 1 spray required at the 3 thrips/leaf threshold
- Spraying at 5 thrips/leaf allowed too much damage

Insecticide Control Options

- Rotate insecticides (classes if possible)
 - e.g., spinosad, pyrethroid, carbamate, organophosphate, carbamate
- Two successive applications of one product to control a generation
- ➤ Time applications based on most appropriate threshold
- > Avoid tank mixing insecticides

Insecticide control failures could be reduced by:

- 1. Monitoring onion thrips populations for resistance
- 2. Using a nozzle and gallonage that provides better coverage
- 3. Using insecticides belonging to new classes
- 4. Adopting insecticide resistance management rotating classes of chemistry

Questions?