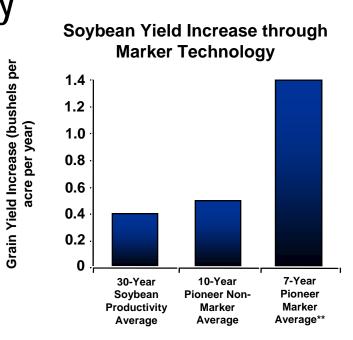
PIONEER® Seed Technology Pipeline

Arnie Imholte Area Agronomist



Soybean Technology

Accelerated Yield Technology (AYT)

- § Proprietary Innovation Developed by DuPont/Pioneer Scientists
 - New varieties available in 2008
- Full line-up penetration by 2012
 Increases Soybean Yields up to 12%
 - Doubles the rate of yield gain vs.
 traditional methods

Yield Acceleration via Marker Assisted Selection (MAS)

- § Until now, MAS techniques have only produced single-gene defensive traits in commercial varieties.
- § Yield is controlled by multiple genes in complex networks
- § AYT allows researchers to simultaneously select multiple genes to significantly boost yields.
- § AYT is not transgenic so soybeans developed from this process are not subject to additional regulatory approvals.

Technology for Soybeans & Corn

The Optimum[™] GAT[™] trait offers a <u>new and better choice in</u> <u>glyphosate tolerance</u> for corn and soybean seed that:

- Maximizes yield and productivity
- Improves crop safety
- Expands weed control options

This trait enables multiple modes of action to provide growers with longer lasting, broader spectrum weed control under more conditions.

Soybeans 2009 Corn 2010

Pending regulatory approval

Maximizing Yield & Productivity

Soybeans

Three years of studies show no yield difference between soybeans with the Optimum™ GAT™ trait and the same isolines that were not transformed

Optimum GAT soybeans will result in a 2-3 bushel (5%) yield advantage

Corn Technology

Anthracnose Resistance

§ Stalk rot yield loss is estimated at >\$1 billion in North & South America

§Available in limited release in 2008

With Anthracnose resistance trait

Without Anthracnose resistance trait

Drought Tolerance: Product Goal

- § Globally drought causes losses in excess of \$8 billion annually.
- §Pioneer is developing hybrids & varieties that use water more efficiently.
- § Evaluate tolerance at Managed Stress Environments
- § Three pronged approach:
 - Conventional breeding program
 - Molecular breeding program
 - Transgenes

Drought Testing: Managed Stress Environments

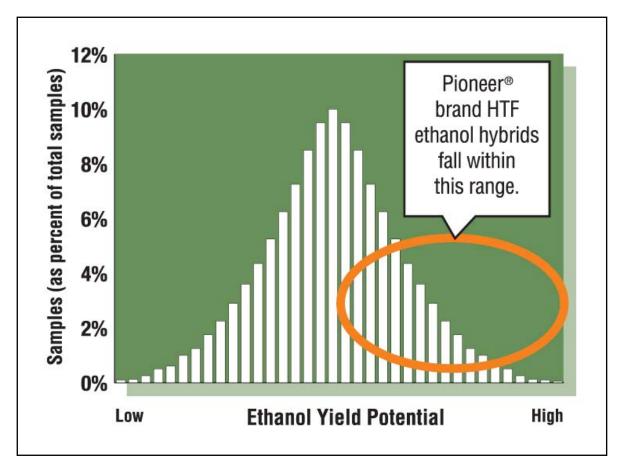
North America
Woodland, CA

South America *Viluco, Chile*

Genetic Contrasts under MSE

Tolerant hybrid Ear phenotype

Susceptible hybrid
Ear phenotype


Increased Ethanol Production

- § High Total Fermentable (HTF) hybrids produce 2-4% more ethanol
- § At 2009 usage levels, traits under development could add \$400-\$800 million per year to the value of corn purchased by dry grind ethanol processors.
- § Commercialization is expected in the next 3-5 years.

Increased Ethanol Production

Each 1% Increase in Ethanol Yield Is Worth About \$.05/Bushel

Nitrogen Utilization Efficiency

To better test our hybrids with improved nitrogen traits, we purposefully create nitrogen-deficient environments like the one shown above

Nitrogen Utilization Efficiency

- § We are using transgenic and traditional research methods to improve NUE
- § Hybrids require reduced quantities of N while maintaining overall yield or increasing yield at existing levels of N usage.
- §Commercially available in 10 years

