The Wisconsin Phosphorus Index Characteristics and use

Wes Jarrell,
University of Wisconsin Discovery Farms

Jan. 15, 2002 Aglime Conference

SUMMARY

Phosphorus that could cause problems in water occurs both in particles (PP) and dissolved in solution (SP) when it reaches surface water.

We consider movement of both particulate and dissolved P into water.

The PI is available in spreadsheet form to simplify calculations.

The numbers and relationships applied will be made more site-specific as we gain experience.

Objective

Decrease nonpoint source P inputs into water bodies efficiently and economically.

Characteristics of P index

- Accurately rank fields in order of their risk of supplying
 P to a water body
- Based on **best available science**, easily modified to reflect improvements
- Easy to use, interpret, and apply
- Helps user understand factors affecting P movement to water
- Direct user to **improved management practices** that effectively and economically lower the risk
- Should be applied over the whole farm
- Provide maximum flexibility to farmer, while decreasing P loading.

Total Risk Index for Phosphorus (PI):

$$PI = PP + SP + LP$$

PI = Total P index

PP = Particulate P

SP = Soluble P

LP = Leached P

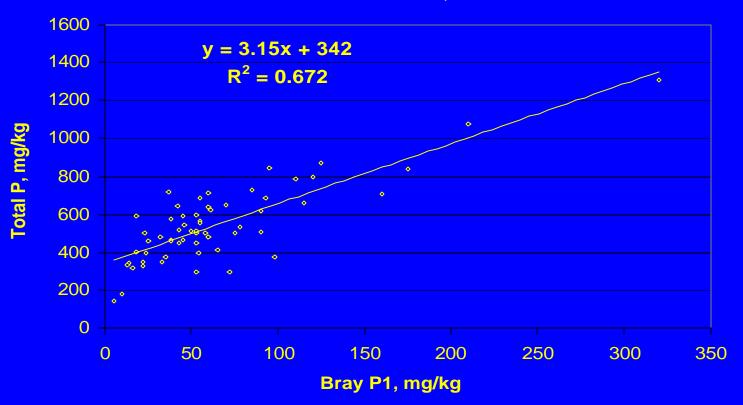
PP: Depends on (1) erosion, (2) fraction of eroded particles delivered to stream, and (3) P concentration in the soil particles

Calculation:

Particulate P =

Rusle2 *

Sediment Delivery Ratio *


Enrichment Ratio *

BufferEffectiveness*

Soil particle P concentration (from Bray

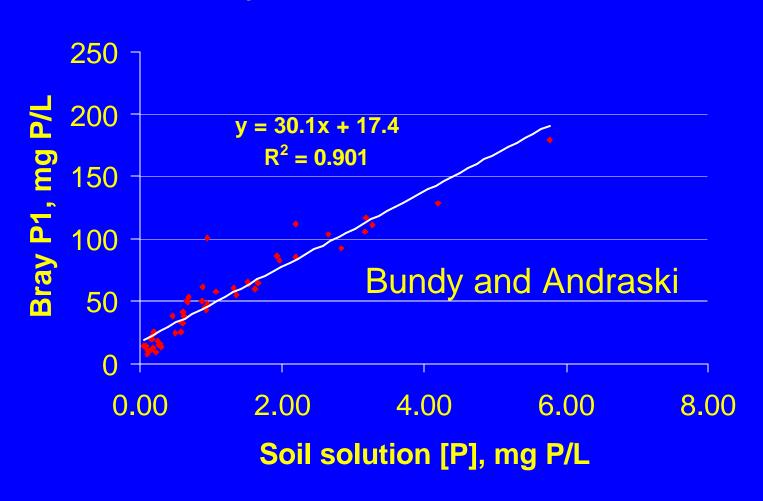
P1)

Pheasant Branch: TP vs total P, Elena Bennett

Also: Meyer, Lyne, Avila, Barak, UW Madison, Plano silt loam: Total P = 2.5 (Bray P1) + 875 Soluble P: Depends on amount of runoff, P concentration in the soil, and soluble P concentrations in P-containing amendments/fertilizers

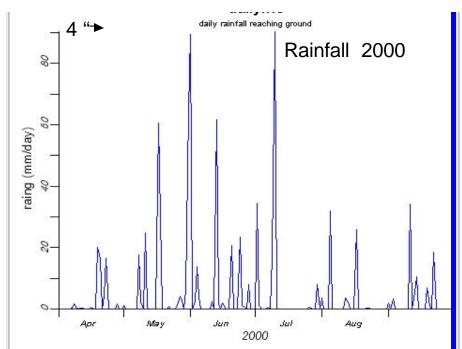
Total of

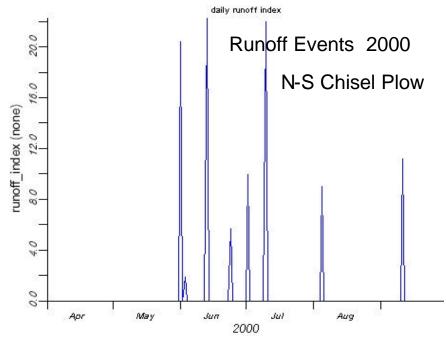
SP from soil P

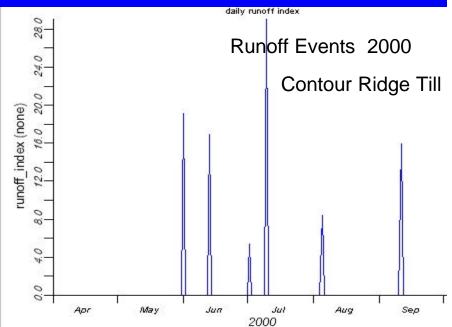

- + SP from unincorporated nutrients on unfrozen soil
- + SP from unincorporated nutrients on frozen soil (SP release from alfalfa?)

a. For no fertilizer or incorporated fertilizer:

Annual runoff volume *


Soil solution [P] (from Bray P1)


Bray P1 vs soil solution P


b. For surface-applied nutrients without incorporation:

Soluble P in manure (lb/A) / average days between runoff-generating events

c. For snow-melt events with nutrients spread on frozen soil:

Soluble P in manure (lb/acre)*

Slope percentage(squared)/200

NOT YET INCORPORATED INTO MODEL

d. For loss of P from crop residue

SP = Soluble P in residue *

Runoff volume

NOT YET INCORPORATED INTO MODEL

LP = P lost through leaching

LP =

P concentration in soil solution/

(depth to tile * retention coefficient * recharge volume)

Preliminary Interpretation of risk associated with PI values:

- 0 2 Low risk: low probability of being a problem except for very sensitive water bodies
- 2 6 Intermediate risk: important for water bodies sensitive to P inputs
- 6 10 High risk: Likely excessive in most watersheds
- >10 Very high risk: Excessive for almost any water body

Examples

Situation: Corn, silt loam soil, 100 ppm Bray P1, next to stream, 3% slope

No-till corn, 25 T/A dairy daily haul

$$Total = 4.01$$

Total =
$$4.01$$
 Particulate = 0.18 Soluble = 3.76

Soluble
$$= 3.76$$

Moldboard plow, corn, no manure

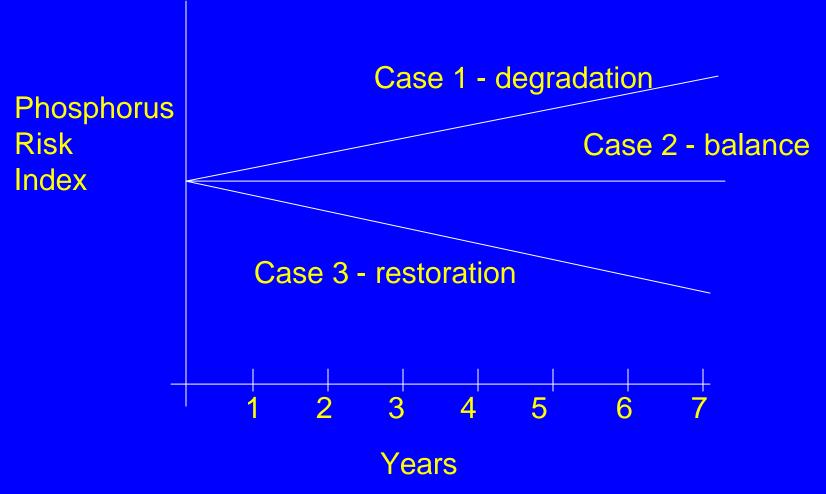
$$Total = 3.64$$

Soluble =
$$0.64$$

3. Moldboard plow, corn, 25 T/A dairy daily haul

$$Total = 5.59$$

Soluble
$$= 2.59$$


No-till, corn, 25 T/A dairy daily haul, no feed supplement

Soluble
$$= 1.43$$

5. No-till, corn, 25 T/A dairy daily haul, frozen ground

Soluble
$$= 1.81$$

The Phosphorus Risk Index - Progressive Planning

