

Presentation Outline

- > Why is there interest in bioenergy?
- > Why is there concern about bioenergy?
- > How is USDA-ARS addressing these questions?
- > What has cooperative field research shown?
- > What are the next steps?

America's Energy Appetite

Proposed Bioenergy Plans

Goal

Plan

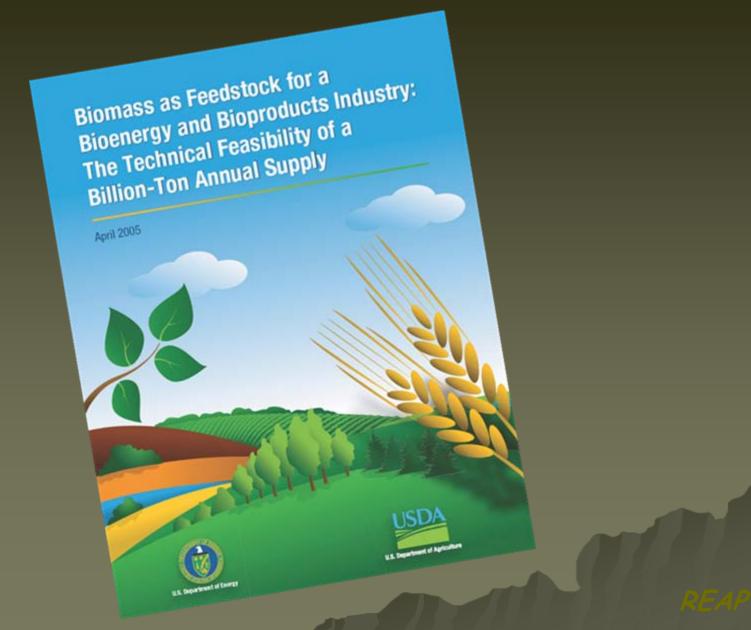
Time Feedstock Agency

, , , ,		, ,,,,,	, 3343,031,	<i>7.93.1.27</i>
Energy Policy Act of 2005	7.5 billion gal ethanol	2012	2.7 billion bu	Congress
20 in 10	20% of gasoline use (35 billion gal)	2017	12.5 billion bu (440 million tons biomass)	2007 State of the Union Message
25 × '25	25% of US energy consumption (85 billion gal + 400 billion kw)	2025	600 to 750 million tons biomass	Ag Energy Working Group
30 x '30	30% of gasoline used in 2004 (60 billion gal)	2030	1 billion tons	DOE

Erosion Cost For Grain Ethanol

The IA Natural Resources Inventory shows a soil erosion loss of 4.9 tons per acre per year

The 2005 & 2006 average corn yield was 170 bu/ac Assume 2.7 gal EtOH/bu Soil loss = 21 lbs/gal


Water Quality Cost of Grain Ethanol

➤ 15% increase in corn acres planted in Illinois, Indiana, Iowa, Ohio, Michigan, Minnesota and Wisconsin for 2007 (NASS, 2007)

- Potential increased loss of 211 million lbs of N to streams & rivers (Elobeid et al, 2006; Wisner, 2007)
- Potential increased loss of 20 million lbs of P to streams & rivers

What Are Our Alternatives?

Biomass for Bioenergy

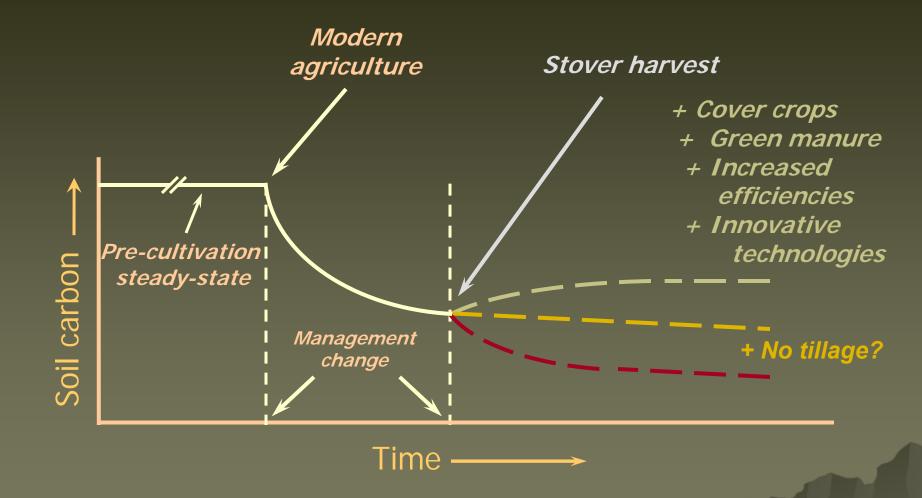
- Forestry 368 million tons Agriculture - 998 million tons
 - Perennial energy crops 377 million tons
 - "Wastes" 87 million tons
 - Grain 87 million tons
 - Crop residues 428 million tons
 - ◆Corn stover 256 million tons

(projected estimates; Billion Ton Report, Perlack et al 2005)

Comprehending the Challenge

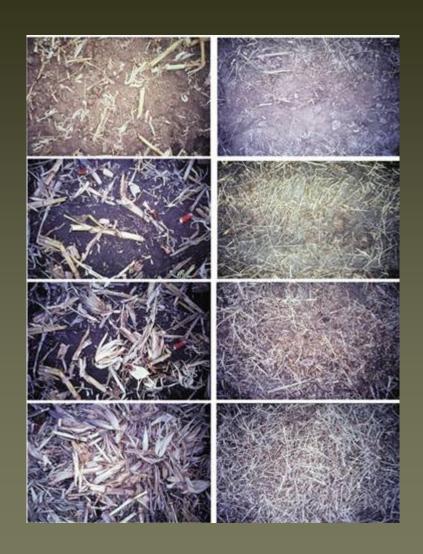
Football Field

If 1 ton = 1 sq in 1 billion tons = 145 football fields



Round Bales

5 ft, 1000 lb, laid end-to-end1.89 million miles75 times around the earth


Meeting the Challenge Sustainably

 \triangle SOC = input - output

Crop Residues Reduce Erosion

Crop Residues Sustain Soil Life

Crop Residues & Physical Properties

Critical Take-Home Point

Crop residues are not trash!

They have multiple roles that help sustain soil resources

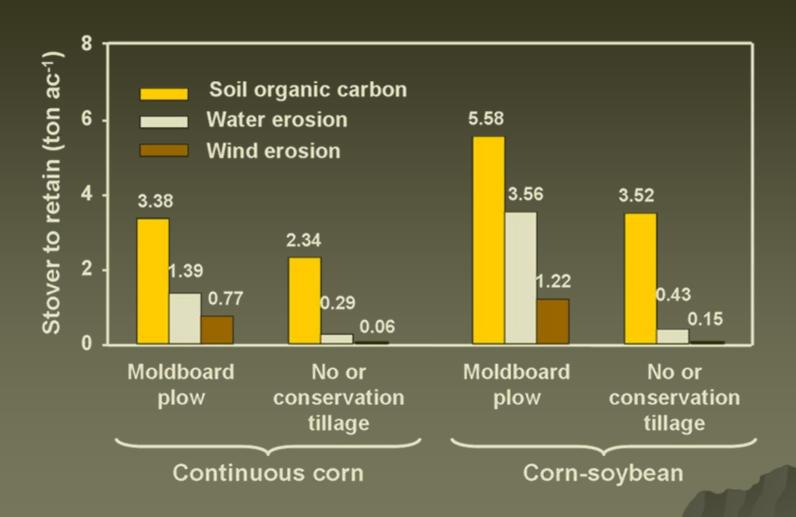
"Economic growth that destroys ecological support systems is neither sustainable nor truly progress"

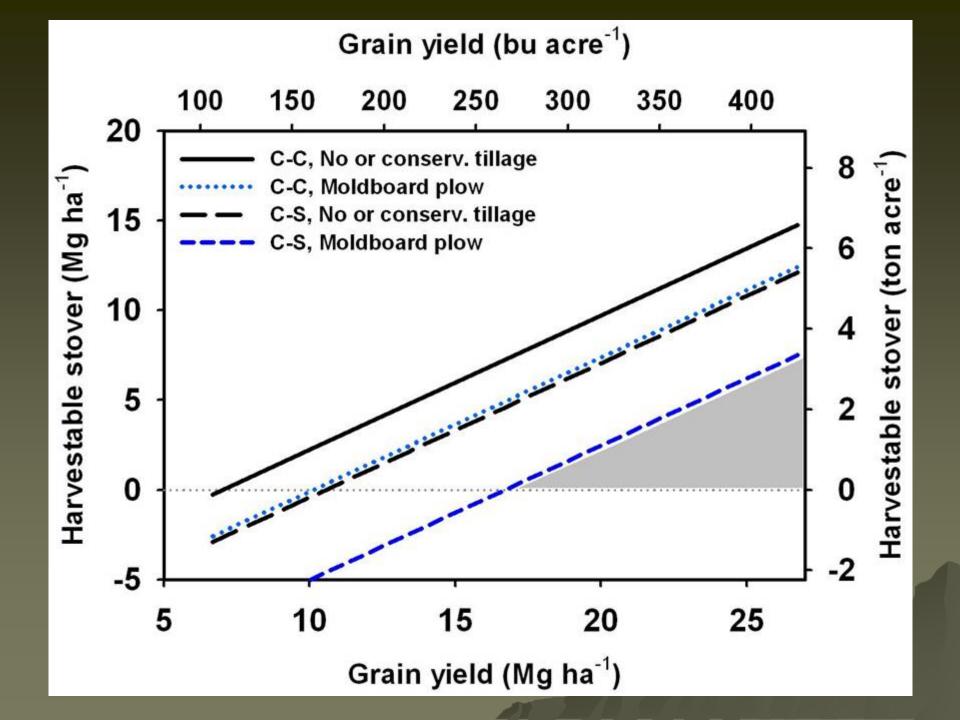
ARS-Renewable Energy Assessment Project (REAP)

- Management practices
- > Algorithms to guide sustainable harvest
- > Decision support tools
 - > How much residue must be retained?
 - Quantify benefits associated with retaining crop residues

VISION

Sustainable Feedstock Production & Harvest


Biomass Harvest - Risk Analysis


- > Benefits
 - > Renewable
 - > Domestic
 - Reduces release of fossil CO₂
 - Additional farm commodity

- > Risks
 - Decreased surface residues
 - > Increased erosion
 - Off-site nutrient and sediments
 - Decreased SOM
 - Decreased productivity
 - Other loss of winter cover, habitat

Factors Limiting Crop Biomass Removal

Initial Biomass Studies at Ames, IA

Participants and Questions

- Collaborative with Drs.
 S.J. Birrell (ISU) & C.W.
 Radtke, Idaho National
 Lab (DOE)
- Evaluating continuous corn & corn/soybean rotations
- Four crop residue harvest scenarios
- Nutrient removal
- Feedstock quality
- > Soil quality impact

Corn Grain Yields

Continuous Corn	2005 (DKC-52-45)	2006 (P35Y61)	2007 (AgriGold 6395)
Stover Harvest Scenario	bu ac-	⁻¹ at 15.0% m	oisture
Whole plant	185	177	228
Cob & top 50%	185	174	228
Bottom 50%	184	163	225
Grain only	185	161	217
LSD (0.1)	NS	3	10

Corn Stover Yields

Continuous Corn	2005	2006	2007
	(DKC-52-45)	(P35Y61)	(AgriGold 6395)
Stover Harvest Scenario	tons	ac ⁻¹ at 0% m	oisture
Whole plant	2.10	2.82	2.43
Cob & top 50%	1.30	2.28	1.95
Bottom 50%	0.56	0.70	0.29
Grain only			
LSD (0.1)	0.11	80.0	0.17

Grain Yields

Rotated Corn	'05 Corn [†] (Fontenell 5393)	'06 Soybean [‡] (Apache 626RR)	'07 Corn [†] (P34A20)
Stover Harvest Scenario		bu ac ⁻¹	
Whole plant	226	36.6	211
Cob & top 50%	220	46.8	204
Bottom 50%	254	46.2	211
Grain only	275	52.8	205
LSD (0.1)	30	10.1	NS NS

† 15.0 % water content ‡ 13.0% water content

Corn Stover Yields

Rotated Corn	'05 Corn [†] (Fontenell 5393)	'07 Corn [†] (P34A2O)
Stover Harvest Scenario	tons ac ⁻¹ at 0%	6 moisture
Whole plant	3.17	3.24
Cob & top 50%	2.05	2.30
Bottom 50%	0.80	0.88
Grain only		
LSD (0.1)	0.47	0.51

Soil Test Status - Fall 2005

Indicator	Units	Management Practice		
		Cont. Corn	Rotated Corn	
Total organic C	%	5.37	1.90	
рН		7.72	6.68	
Mehlich 3 Ext. P	ppm	32 (opt)	22 (low)	
Mehlich 3 Ext. K	ppm	128 (low)	94 (low)	

Macro-Nutrient Removal

Stover Harvest Scenario	Ranges for Three Hybrids ('05 & '06)			
Scendi 10	N	P	K	
		lb ac ⁻¹		
Whole plant	17 - 45	2 - 4	29 - 38	
Cob & top 50%	12 - 28	2 - 4	23 - 28	
Bottom 50%	4 - 12	0.5 - 0.7	5 - 12	

Macro - Nutrient Replacement Cost

Stover	Harvest
Sce	nario

Average for Three Hybrids ('05 & '06)

\$	ac^{-1}
4	40

\$ ton-1

\$ 7.84

\$ 7.94

\$ 8.00

Secondary & Micro-Nutrients

Stover Harvest Scenario	Averag	e Remov	al for Th	iree Hybr	ids ('05	& '06)
	Ca	Mg	Cu	Fe	Mn	Zn
	lb d	1c ⁻¹		g d	ac-1	-
Whole plant	26	19	4	204	61	37
Cob & top 50%	14	10	3	123	34	27
Bottom 50%	7	5	1	87	18	8

Secondary & Micro-Nutrient Replacement Cost

Stover	Harvest
Sce	nario

Average Replacement Cost ('05 & '06)

\$ ac-1

\$ ton-1

Whole plant

\$ 5.00

\$ 1.84

Cob & top 50%

\$ 2.95

\$ 1.54

Bottom 50%

\$ 1.47

\$ 2.08

Total Nutrient Replacement Cost

Stover	Harvest
Sce	nario

Average for Three Hybrids ('05 & '06)

	\$	ac-

[†] Assumes 80 gal EtOH ton⁻¹ biomass

Efficient Bioenergy Production Will Require All Disciplines

- Agronomy
 - > Continuous green cover
 - Optimize planting patterns, cultivars, and cultural practices
- Soil science
 - > Improve water and nutrient use efficiencies
 - Precision input application
- Crop breeding
 - Improve quality
 - > Enhance stress tolerance
- Physiology/morphology
 - Canopy structure
 - Root structure and function
- Biochemistry
 - > Modify metabolic pathways
 - Eliminated inefficiency (photorespiration)
- Genetic engineering
 - ➤ Make C₃ species as C efficient as C₄ species
 - > Use green light
 - > Use all energy in photons

Diversity Can Make Us All Winners

- Ligno-cellulosic technologies can provide viable markets for a wide variety of crops
- Landscape diversity can help solve bioenergy, air quality, water quality, global warming (through C sequestration) & rural economic problems IF implemented as an entire agricultural system.

