Anaerobic Digesters on Wisconsin Farms

Dr. John F. Katers

Associate Professor, Natural and Applied Sciences (Engineering)
University of Wisconsin-Green Bay

Wisconsin Fertilizer, Aglime & Pest Management Conference Madison, Wisconsin

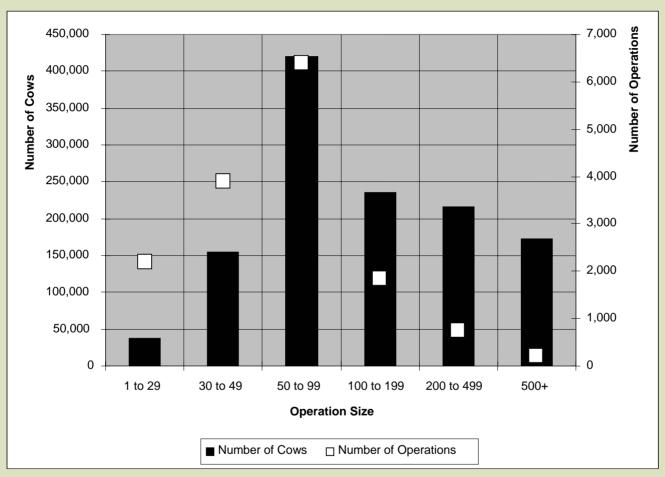
January 17, 2007

Presentation Goals

- Outline drivers for farm-based anaerobic digestion projects
- 2. Describe the anaerobic digestion process and commercially available technologies
- 3. Discuss the options for electrical generation, solids separation and thermal energy recovery
- 4. Summarize farm-based anaerobic digestion systems in Wisconsin
- 5. Describe UW-Green Bay research projects related to anaerobic digestion, as well as other potential research opportunities

Introduction

- Anaerobic digestion is not a new technology
 - One of the oldest processes used by POTWs for biosolids stabilization
 - > New variations developed over the last several decades
- Anaerobic digestion is being more closely evaluated by industry and agriculture
 - > Food processors (dairy, vegetable, brewing, etc.)
 - Meat packers
 - > Large dairy farms
- Wisconsin is currently the national leader in farm-based anaerobic digestion systems
 - ➤ Efforts of Focus on Energy, Biogas Working Group, equipment installers and others



Potential Drivers for Manure Based Anaerobic Digestion Projects

- Increasing farm size
 - > Size of the "problem" or "opportunity" increases
 - Minimum size requirement for anaerobic digestion is generally considered to be 500 cows
 - o Research being done on small-scale systems
- Increasing environmental scrutiny
 - > Facility based issues
 - Manure storage
 - Odors
 - Green house gas emissions
 - > Land application and associated water quality issues
 - Nutrient management (N, P and K)
 - Pathogens

Reality: Dairy Herd Sizes in WI

Source: Wisconsin 2006 Agricultural Statistics, Year 2005 Numbers

What is Anaerobic Digestion?

 Process using naturally occurring microorganisms to digest/degrade organic materials in the absence of air

Characterized by temperature

➤ Mesophilic 95-105°F

> Thermophilic 125-135°F

 Literature indicates that thermophilic bacteria are capable of metabolizing organics at a more rapid rate

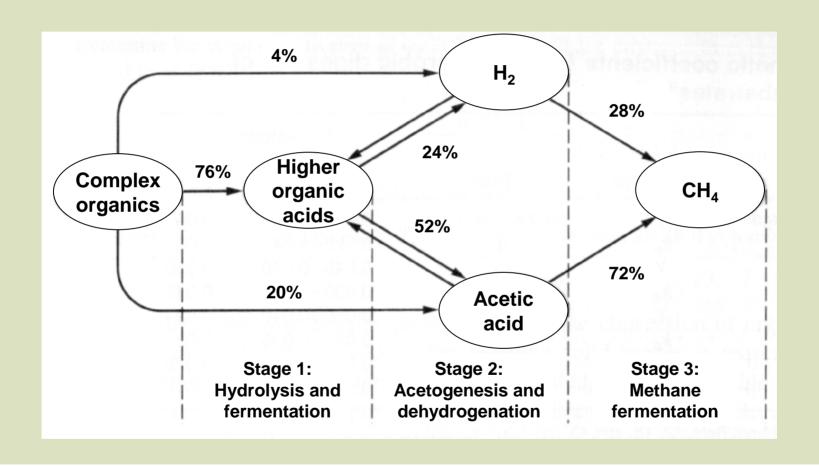
Steps in the Anaerobic Digestion Process

Hydrolysis

> Initial conversion of complex organic matter

Acidogenesis

- > Fermentation to acids by "acid formers"
- > Occurs relatively fast, with limited process concerns


Methanogenesis

- > Methane generation by "methane formers"
- Occurs slowly low doubling rate of methane formersRate limiting step
- > Process control of temperature, HRT, pH, etc., is critical

Steps in the Anaerobic Digestion Process

Source: Metcalf and Eddy, 1991.

Products of Anaerobic Digestion

- Biogas (CH₄, CO₂, H₂S, trace gases)
 - > Energy value depends on the methane content
 - Typically 60-70% methane
 - 600-700 Btu per cubic foot
 - ➤ Moisture and H₂S content of the biogas are critical concerns for the operation of electrical generation equipment
 - Equipment issues are often more critical than the biological process

Biosolids

> Value will depend on ability to "capture" the solids from the digester effluent and produce a value-added product

Solids Separation Systems

Critical Issues for Solids Separation

- Solids capture rate
- Solids percentage of the final product
- Fate of the nutrients
- Reliability
- Capital and O&M Costs

Common technologies

- Screens
- Screw presses

Optional polymer addition can increase solids capture rate and nutrient recovery in the solids

Anaerobic Digestion Systems: Covered Lagoons

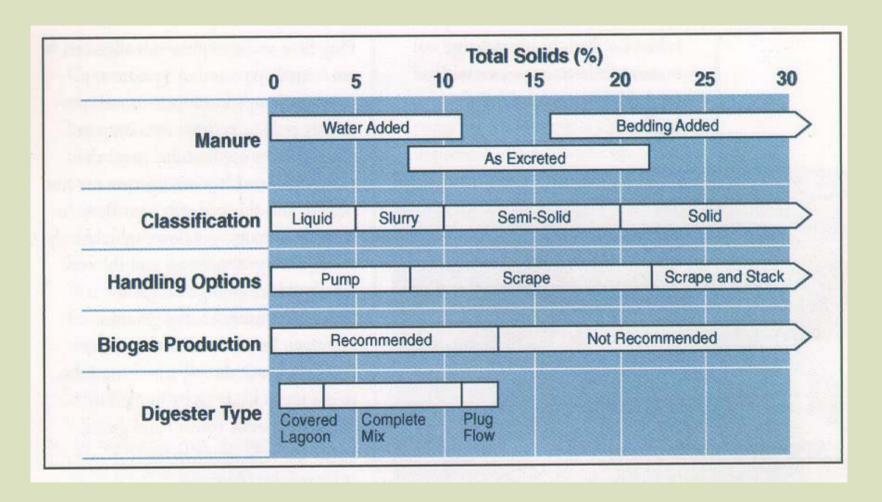
- Primarily used for large volume, low solids manure
- Impermeable cover traps gas generated during anaerobic decomposition
- General characteristics:
 - No mixing or temperature control
 - Climate sensitive
 - Long detention times (60+ days)
 - Lowest cost systems
 - Odor reduction and minimal energy recovery can be achieved

Anaerobic Digestion Systems: Plug Flow

- Primarily used for high solids manure
 - ➤ Move through as a plug (i.e., like toothpaste)
- Flexible or rigid covers for gas collection
- General Characteristics:
 - > Temperature control with no mixing
 - Detention times (15-30 days)
 - > Normally operated at mesophilic temperatures
 - Solids deposition may be a problem for sand/grit or if the solids content changes substantially
 - Type of bedding used by the dairy
 - Summer use of misters/sprinklers

Example: Plug Flow System

Anaerobic Digestion Systems: Complete Mix

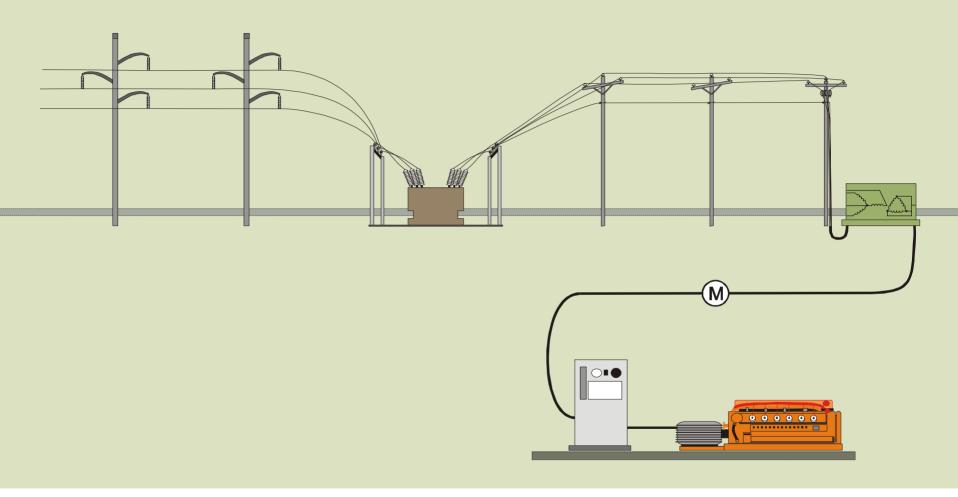

- Primarily used for manure in a range of 3-10% solids
- Digester can be above or below ground
- General Characteristics
 - > Temperature control with mixing
 - > Detention times (15-20 days)
 - Can be operated at mesophilic or thermophilic temperatures
 - > Capital cost can be somewhat higher

Example: Complete Mix System

Example: Solids Concentration

Biogas Utilization Options

- Internal combustion engines/generators
- Microturbines
 - > Currently more common for POTW or landfill applications
- Significant Operational Issues
 - Connecting to the grid
 - > Biogas quality requirements
 - Gas cleaning systems are often required
 - Cost and reliability are issues
 - Thermal energy recovery
 - Digester heating
 - Space heating
 - Other uses


Internal Combustion Engines

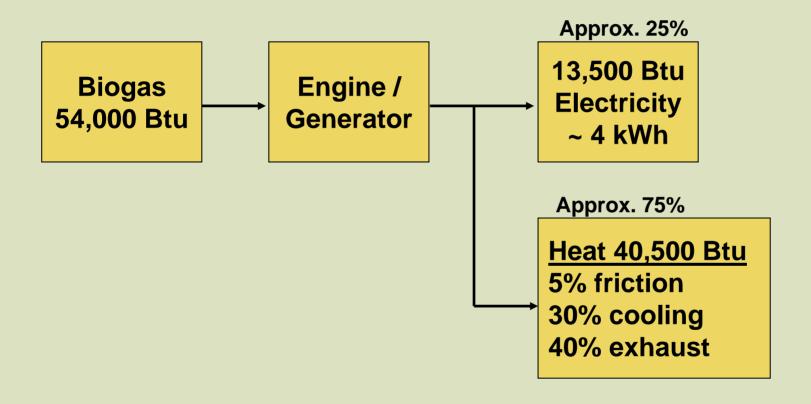
Microturbines

Simplified Electrical Distribution System

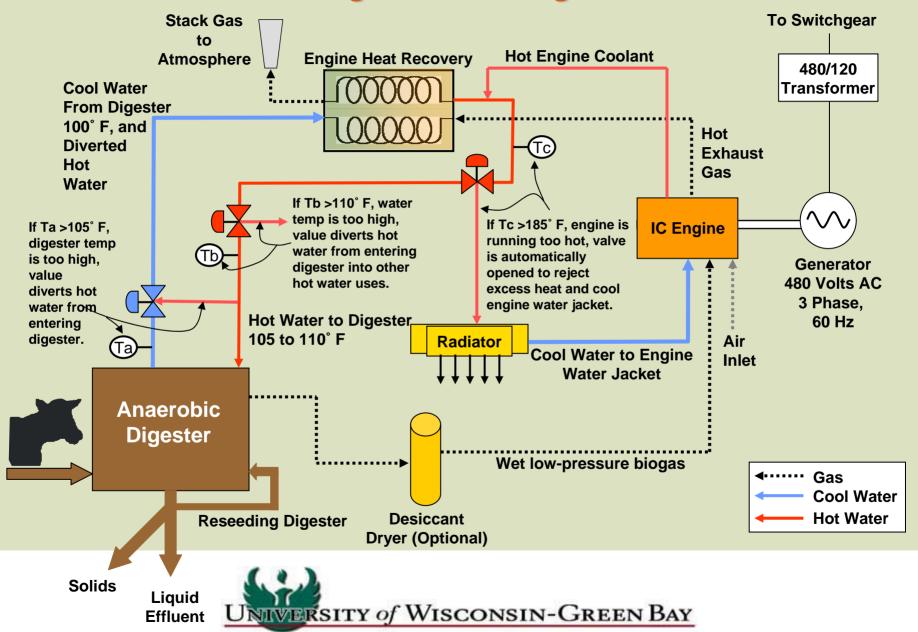
Electrical Generation

Dairy, plug-flow

90 ft³/cow/day


@ 600 Btu/ Ft³ Methane Generator efficiency ~ 25%

~ 4 kWh per cow/day


Need 6 cows to meet the electrical needs for a typical household, which uses approximately 700 kWh/month

Combined Heat and Power Systems

Anaerobic Digester / IC Engine-Generator

Costs of Manure Based Anaerobic Digestion Projects

- Installed cost of approximately \$1000/cow
 - ➤ 10% for feasibility study, design and engineering
 - > 45% for electrical equipment
 - > 35% for the anaerobic digestion system
 - > 10% for manure collection/equalization
- Several potential financing options may be available

Potential Benefits of Manure Based Anaerobic Digestion Projects

- Biogas Utilization
 - > Power generation and thermal energy recovery
 - > Green power credits
 - New RPS requirements in Wisconsin
 - Example: We Energies "Biogas Buyback Rate"
 - o \$0.08/kWh on peak
 - o \$0.049/kWh off peak
 - > Income from processing off-site wastes
 - Cannot exceed 10% of total volume unless permitted
 - > Greenhouse gas credits

Potential Benefits of Manure Based Anaerobic Digestion Projects

- Biosolids Utilization
 - More homogenous effluent is generated
 - IMPORTANT NOTE: Little change in nutrient content occurs because of anaerobic digestion
 - Solids may be utilized/sold for bedding, soil amendments and fertilizer
 - Bedding saving of \$40-50/cow/year
 - Often critical for project economics because of low electrical rates in the Midwest
 - Payback of 13 years without solids separation and 6 years with solids separation

Farm Digesters in the U.S. Source: AgSTAR, 2006

State	Operating Anaerobic Digestion Systems	Total Energy Production (1,000 kWh/yr)
Wisconsin	21	72,927
California	18	49,380
New York	13	8,935
Pennsylvania	11	9,966
Iowa	5	3,066
Illinois	4	3,154
Texas	3	19,447

Farm Name and Location	Farm Type head	Digester Type	Biogas Use	Heat Application
Five Star Dairy	Dairy	Microgy	Electricity	Digester
Elk Mound	(910)	complete-mix, thermophilic	generation	
Wild Rose Dairy	Dairy	Microgy	Electricity	Digester
LaFarge	(900)	complete-mix , thermophilic	generation	
Baldwin Dairy	Dairy	Clay-lined lagoon with	Flared,	None
Baldwin	(1,225)	poly cover (ambient temperature)	no use	
Emerald Dairy	Dairy (1,600)	Poly-lined lagoon with	Flared,	None
Emerald		poly cover	no use	
		(ambient temperature)		
Double S Dairy	Dairy (1,100)	Mixed plug-flow loop	Electricity	Digester, parlor floor,
Markesan			generation	offices, shop floor
Gordondale Farms	Dairy	Mixed plug-flow loop	Electricity	Digester, dairy parlor,
Nelsonville	(850-900)		generation	offices, engine room, warm water flush flume
Stencil Farm	Dairy (1,000)	Plug-flow	Electricity	Digester
Denmark		mesophilic	generation	
Quantum Dairy	Dairy	Modified plug-flow,	Electricity	Digester
Weyauwega	(1,200)	mesophilic	generation	
Vir-Clar Farms	Dairy	Complete-mix,	Electricity	Digester
Fond du Lac	(1,350)	mesophilic	generation	

Farm Name and Location	Farm Type head	Digester Type	Biogas Use	Heat Application
Holsum Dairy Hilbert – Irish Rd	Dairy (3,000)	Modified plug-flow, mesophilic	Electricity generation	Digester
Norswiss Digester Elk Mound	Dairy (1,300)	Complete-mix, thermophilic	Electricity generation	Digester
Suring Community Dairy Suring	Dairy (1,000)	Complete-mix, mesophilic	Electricity generation	Digester
Green Valley Dairy Green Valley	Dairy (2,500)	Complete-mix, mesophilic	Electricity generation	Digester
Lake Breeze Dairy Malone	Dairy (3,000)	Modified plug-flow, mesophilic	Electricity generation	Digester
Holsum Dairy Hilbert – Elm Rd	Dairy (3,000)	Modified plug-flow, mesophilic	Electricity generation	Digester
Clover Hill Dairy	Dairy (1,050)	Modified plug-flow, mesophilic	Electricity generation	Digester
Crave Brothers Farm	Dairy (700 + whey)	Complete-mix, mesophilic	Electricity generation	Digester

Wisconsin Anaerobic Digestion Systems: Complete-mix Mesophilic

- Vir-Clar Farm and Green Valley Dairy
 - Biogas Nord Systems
 - Cylindrical concrete tanks
 - Mechanical mixing and internal heat exchange
 - Inflatable membrane cover
 - > 350 kW at Vir-Clar and 550 kW at Green Valley

Wisconsin Anaerobic Digestion Systems: Complete-mix Mesophilic

- Suring Dairy and Crave Brothers Farm
 - > AMBICO Digester Systems
 - Stainless steel tanks
 - Mechanical mixing and internal heat exchange
 - 10% whey addition at Crave Brothers
 - > 250 kW at Suring and 250 kW at Crave Brothers

Wisconsin Anaerobic Digestion Systems: Complete-mix Thermophilic

- Five Star Dairy and Wild Rose Dairy
 - Microgy Digester Systems
 - 20 day detention time
 - Thermophilic temperature
 - Biogas sold to Dairyland Power, which owns the electrical generation equipment and is responsible for on-site maintenance
 - Estimated payback of 10 years
 - Many similar digestion systems have been installed in Europe over the past several decades

Wisconsin Anaerobic Digestion Systems: Mixed Plug Flow

- Double S Dairy and Gordondale Farms
 - > GHD Digester Systems
 - 20 day detention time
 - Mesophilic temperature, with internal heat exchange
 - Mixing is done in zones within the digester using biogas
 - Fixed cover, pre-cast concrete with an insulating foam coating

Wisconsin Anaerobic Digestion Systems: Plug Flow

- Stencil Farms
 - > 20 day detention time
 - Mesophilic temperature
 - Inflatable membrane cover
 - > Internal heat exchange
 - Operational issue developed because of hard water coating pipes and reducing heat exchange capacity

UW-Green Bay Research Projects Related to Anaerobic Digestion

- Tinedale Farms (TPAD and Solids Separation)
 - > UW System Applied Research Grant
 - > DOE Grant
 - > ADD Grant
- Anaerobic Photocatalysis (New Technology)
 - > Focus on Energy Grant
 - > UW System Applied Research Grant
- CBT and Growing Power (Acid Digestion)
 - > DATCP Grant

Tinedale Farms

UWGB Graduate Students in ES&P Joe Raboin Anne Schauer (Ph.D student at MU)

Anaerobic Photocatalysis

- Utilization of a photocatalytic process for the production of methane
 - ➤ Eliminate the need for methane forming bacteria, the rate limiting step in the anaerobic digestion process
- Questions that still need to be addressed
 - > Rate constants for the chemical reaction
 - > Technical and economic feasibility
 - Parasitic power, catalyst lifespan, etc.
 - > Applicability to other substrates

Acid Digestion: CBT and Growing Power

Governor Richardson, Mark Heffernan, Will Allen and Governor Doyle

Other Research Activities / Opportunities

- Performance comparison of existing anaerobic digestion systems
 - > AgSTAR and USDA, in conjunction with Focus on Energy
- Development of modular or small-scale anaerobic digestion systems that would be applicable for smaller farms
 - > RFP issued in Minnesota
- Evaluation of co-digestion of various substrates
- Analysis of regional/community anaerobic digestion systems
 - > Dane County project

Potential Research Opportunities (continued)

- Enhanced use of thermal energy from farm-based anaerobic digestion systems
- Improved solids separation processes
 - > Separation equipment
 - > Value-added products from separated solids
 - > Nutrients utilization
- Evaluation of other "non-economic" benefits
 - Odor control
 - > Pathogen destruction

Conclusions

- Wisconsin is the national leader in farm-based anaerobic digestion systems
- Anaerobic digestion is being considered as a way to make large farms environmentally acceptable
- Anaerobic digestion appears to be economically viable for farm-based applications when properly designed and coupled with solids separation/utilization
- Questions relating to nutrient management remain

Conclusions (continued)

- Technology innovations are expected in next few years
- Many R&D opportunities exist for the application and expansion of anaerobic digestion to other industries/byproducts

Questions?

Thank You

Dr. John F. Katers
University of Wisconsin-Green Bay
2420 Nicolet Drive
Green Bay, WI 54311

Phone: 920-465-2278

E-mail: katersj@uwgb.edu

