The Advisability of Using Cation Balance as a Basis for Fertilizer Recommendations

Keith A. Kelling and John B. Peters

Department of Soils Science University of Wisconsin - Madison

BCSR Concept Implications:

* Only considers base cations (Ca, Mg, and K) and soil acidity

- * For optimum growth
 - Need best total base saturation
 - Need ideal ratio of cations

Base Cation Saturation Ratio (BCSR) Approach:

- * First proposed by Loew, 1892
 - "The balance of cations, especially that of calcium and magnesium, appears to substantially influence crop growth..."
- * Theoretical basis
 - Bonding energies differ between cations
 - Level of one cation influences uptake of others
 - Both capacity (total exchangeable) and intensity (activity) affect availability
 - Filling pH dependent change sites increases availability

"Ideal" BCSR soil proposed by Bear et al (1945)

% saturation	ratios		
65% Ca	Ca:Mg = $6.5:1$		
10% Mg	Ca:K = 13:1		
5% K	Ca:H = 3.25:1		
20% H	Mg:K = 2:1		

Based on one NJ soil for alfalfa

BCSR contributing research

* Bear and Toth (1948) used 20 important NJ ag soils; concluded that "ideal" ratios were correct.

* Graham (1959) suggested ratios more broad in MO

$$6 - 12\% \text{ Mg}$$

$$2 - 5\% K$$

Often forgotten observations by Bear and coworkers:

- 1. 10% Mg saturation may be minimum rather than optimum
- 2. Use least expensive cation (Ca) to avoid luxury K uptake
- 3. Liming above 80% BCS resulted in micronutrient (especially Mn) deficiencies
- 4. Soluble Mg needed on some soils

Treatments resulting in highest yield or tissue Ca level on 20 NJ soils

Cation	Alfalfa Yield	Alfalfa Ca
	% exchange si	ite saturation
Ca	15	22
Mg	11	16
K	2.2	1.6
Н	67	59

Ca:Mg 1.4:1; Ca:K 6.8:1 – 13.7:1 Bear and Toth (1948)

W.A. Albrecht and students; Several papers from 1937-1947

- No alfalfa nodules at pH 5.5 unless added Ca
- Adding Ca increased number more than raising pH
- Limed and fertilized gave better bones
- Hay yields increased when Ca variable
 - Artificial media
 - Few or no statistics

Soils where BCSR may work:

- * Highly weathered, low pH soils
- * Low to moderate CEC
- * Medium to coarse texture
- * Large rates of nutrients/lime required
- * Addition of Mg required to avoid grass tetany

Private soil testing labs sought distinction:

- * In 1960's private soil testing labs expanded rapidly
- * Survey in early 1970's showed 11 of 12 university labs in NC region used sufficiency level concept for recommendations
- * 87% of private labs used BCSR
 - concept attractive
 - private vs university distinction
 - generally recommended more nutrients
 - tested soils for more nutrients

Field evaluation of BCSR vs sufficiency level (McLean et al, 1983)

* Silt loam very low in basic cations

*
$$CEC = 14.2 \text{ mg}/100g$$

*
$$pH = 4.1$$

* Treatments

Ca from calcitic lime (5.0, 6.0, 6.5)

Mg = 4, 6, 10% of CEC

K = 2.4, 4.3 % of CEC

* Created soil ratio ranges

Ca:Mg 2.3 - 26.8

Mg:K 0.6 = 3.6

Ranges in BCSR for the 5 highest and 5 lowest yielding treatments

Nutrient	Crop	Highest 5	Lowest 5
Ratio			
Ca:Mg	Corn	5.7 - 36.8	5.6 - 21.5
	Soybean	5.7 - 14.9	2.3 - 16.1
	Wheat	5.7 - 14.0	6.8 - 21.5
	Alfalfa	6.8 - 26.8	5.7 - 21.5
Mg:K	Corn	0.6 - 3.0	1.1 - 2.2
	Soybean	1.0 - 3.0	0.7 - 3.6
	Wheat	1.1 - 3.1	0.7 - 2.1
	Alfalfa	0.6 - 2.1	1.0 - 3.0

McLean et al, 1983

Recent Wisconsin experiments

- 3 locations (River Falls, Pine Bluff, Marshfield)
- Added gypsum, Epsom salts, dolomitic lime, calcitic lime or pelletized calcitic lime to achieve various soil pH and Ca:Mg ratios
- At Marshfield and River Falls superimposed annual gypsum and Epsom salts treatments
- Grew corn followed by alfalfa

Measured:

- Yields
- Forage quality
- Earthworms
- Alfalfa stand (weediness)
- Compaction

Relationship between selected soil test parameters and various experimental measures at Marshfield, 1993

Soil test parameter	Alfalfa yield	Alfalfa Stand	Weeds	Alfalfa quality		Earthworms	
	•			CP	ADF	NDF	
pН	**	NS	NS	*	NS	NS	NS
OM	**(-)	**(-)	*	*(-)	NS	NS	*
Exch Ca	NS	NS	NS	NS	NS	NS	NS
Exch Mg	NS	NS	NS	NS	NS	NS	NS
Exch K	**	**(-)	NS	NS	NS	NS	NS
Exch	NS	NS	NS	NS	NS	NS	NS
Ca+Mg+K							
Ca:Mg	NS	NS	NS	NS	NS	NS	NS

Schulte et al, 1995

Conclusions:

- Alfalfa yield related to exchangeable K and soil pH, not Ca:Mg
- Neither Ca or Mg additions affected weeds
- Earthworms related to organic matter, not Ca:Mg
- Alfalfa quality related to pH and stand, not Ca:Mg
- No justification to use calcitic over dolomitic lime or adding extra Ca

Why no response to Ca:Mg imbalance

• Ca and Mg levels are relatively high in soil solution compared to plant uptake

• Plant K uptake is 2 – 4 times that of Ca and Mg

Ca and Mg are supplied to roots by mass flow

The bottom line:

1. "Basic cation ratios <u>per se</u> seem unimportant to the well-being of the crop. Indeed, it appears that instead we should concentrate on sufficiency levels of <u>each basic cation</u>."

E.O. McLean, 1982

2. Emphasis should be placed on providing sufficient, but non-excessive levels of each basic cation rather than attempting to adjust to a favorable BCSR which evidently does not exist.

McLean et al., 1983

UW Soil Science Department

