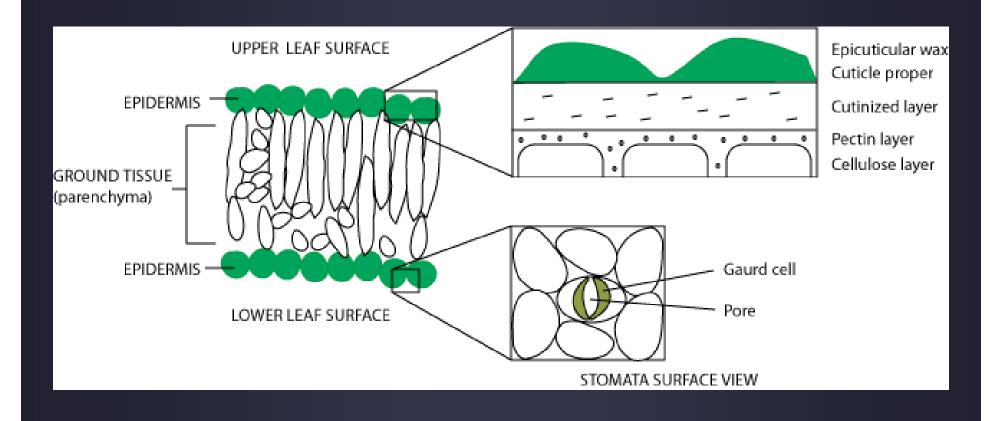
Can Foliar Fertilization Improve Crop Yield?

Carrie Laboski
Soil Science, UW-Madison


Objective

Highlight what is known about nutrient absorption by leaves

Overview of performance of foliar fertilizers

Nutrient Uptake by Leaves

Not a primary function of leaves

Foliar Uptake Affected By:

- Low nutrient penetration rates
 - Particularly thick cuticles
- Runoff from hydrophobic leaf surfaces
- Washing off by rain
- Rapid drying of spray solutions

Foliar Uptake Affected By:

- Limited rates of translocation
- Limited amounts of macronutrients that can be supplied in one application
- Leaf damage

Situations Where Foliar Fertilization May Be Beneficial

- Soils where nutrient availability may be low
 - Mn/Zn on soils with high pH or high OM
- Dry topsoil limiting nutrient availability
 - Particularly arid regions
- Onset of reproduction when root activity decreases and nutrient uptake is reduced

Initial Positive Field Results

- Garcia & Hanway (1976)
 - lowa
 - N-P-K-S at R4 & R5, R5 & R6, or R6 & R6.5
 - Soybean yield increases
 - 1.2 8.0 bu/A

Early Mixed Results

- Gray & Akin (1984)
 - Average soybean yield decreased 5.2 %
 - Over locations in 28 states
- Parker & Boswell (1980)
 - 10.9 and 17.6 % soybean yield decrease
- Harder et al. (1982)
 - Application of N-P-K-S after silking
 - Temporarily reduced photosynthesis
 - Corn yield reduced by 6.4 %

Recent Results: Corn

- Rehm (2003) Minnesota
 - 1 to 3 applications of 25, 12.5, 6.3 and 1.0 lb/a of N,
 P₂O₅, K₂O, and S after silking
 - Yield changed -5.8 to +4.7 bu/a (not significant)
- Sawyer & Barker (1999) Iowa
 - Four treatments
 - 0 or 5 lb/a 0-52-34
 - 0 or 1.7 lb/a 45-0-0
 - Applied at V6-V8, V12-V14, or 50 % VT
 - Significantly greater grain yield without 0-52-34
 - No other effects significant

Recent Results: Soybean

• Rehm (2003) – Minnesota

Nutrient applied				Location		
Ν	P ₂ O5	K ₂ O	S	Waseca	Becker	Rosemount
lb/a				bu/a		
0	0	0	0	57	53	59
40	4	12	3	56	54	57
80	8	24	6	59	50	59
80	8	24	6 +	54	45	56
			micros			

Soybean yield average of 2 varieties. Applied during pod fill.

Recent Results: Soybean

- DiFonzo & Laboski (2004) Michigan
 - 2 qt/a of 10-10-10 + B, Fe, Mn, Zn, Mo
 - At R3 and R5
 - Yield changed -3.3 to +0.8 bu/a
 - But not significantly different than control
 - Break even yield increase = +3.1 bu/a
 - Locations with greatest yield decreases coincided with most evenly distributed rainfall

Summary

- Foliar fertilization may increase or decrease yield
 - Conditions under which yield increase is assured are unknown or not predictable
- Lack of economic yield responses
- Widespread practice of foliar fertilization is not recommended