Does it pay to use nitrification and urease inhibitors?

Carrie Laboski
UW-Madison, Soil Science

The situation:

- N prices are high
- Growers considering reducing N rates
- N losses a concern
- In the past, some growers applied extra N as insurance
- Which is a better and cheaper insurance policy in today's economic climate?
 - Nitrification & urease inhibitors
 - Extra N

Urease Inhibitors

Urea hydrolysis and N volatilization

$$(NH_2)_2CO + 2H_2O \xrightarrow{ure_1se} (NH_4)_2CO_3$$

urea ammonium carbonate

$$(NH_4)_2CO_3 + 2H^+ \longrightarrow 2NH_4^+ + CO_2 \uparrow + H_2O$$

$$NH_4^+ + OH^- \longrightarrow NH_3 \uparrow + H_2O$$

N loss from urea

- Urease is ubiquitous in soil
 - Urea hydrolysis can be complete within 2-3 days
- Up to 20 % of N can be volatilized
 - If urea not incorporated
 - Mechanically or
 - With rain/irrigation (0.5 0.75")
- Stopping urea hydrolysis until rainfall washes urea into soil will reduce N loss

Urease inhibitors - Agrotain

Effective in reducing conversion of surface applied urea and UAN

Corn yield increase from NBPT with surface applied urea and UAN. Yield increase sig. (P<0.01)

Sites	Number of sites	Yield Increase			
		Urea	UAN		
		bu	/a		
All	78	4.3	1.6		
N responsive	64	5.0	2.8		
With sig. NH ₄ + loss	59	6.6	2.7		

Urease inhibitors - Agrotain

- Yield decreases also occur
- Consistent yield increases not expected every year/field
- Benefits likely occur 30 40 % of the time
 - Negative impacts 5-10 % of time

Decision to use Agrotain

- Knowing when significant losses of N are likely
 - Surface application of urea containing material
 - Dry conditions
 - High pH soils
- Cost-benefit

Cost-Benefit of Agrotain Example

- Used actual corn yield response data
 - Agrotain was not a treatment
 - High yield potential soil
 - Previous crop = soybean
 - Max yield achieved is 214 bu/a
 - Yield was maximized at 120 lb N/a
- Price of corn is \$2.20/bu
- Agrotain application rate of 5 qt/T urea
 - 14 days of control
 - \$50/gal Agrotain
- When Agrotain applied, no N loss
 - Yield the same as when no Agrotain and no N loss
 - Realistically may not occur in all fields

Cost-Benefit of Agrotain with Surface Applied Urea

	No N Loss				
N rate	Yield	Return			
lb N/a	bu/a	\$/a			
If N costs \$0.22/ lb N					
140	214	440.00			
115	213	443.30			
100	211	442.20			
90	208	437.80			
If N co	sts \$0.	38/ lb N			
140	214	417.60			
115	213	424.90			
100	211	426.20			
90	208	423.40			

Cost-Benefit of Agrotain with Surface Applied Urea

Cost-Benefit of Agrotain with Surface App						
	No N Loss — Assume 20 % N Loss —					oss —
N rate	Yield	Return	N Loss Yield Re		Return	Lost Return
lb N/a	bu/a	\$/a	lb N/a	bu/a	\$/a	\$/a
If N costs \$0.22/ lb N						
140	214	440.00	28	212	435.60	4.40
115	213	443.30	23	209	434.50	8.80
100	211	442.20	20	205	429.00	13.20
90	208	437.80	18	201	422.40	15.40
If N costs \$0.38/ lb N						
140	214	417.60	28	212	413.20	4.40
115	213	424.90	23	209	416.10	8.80
100	211	426.20	20	205	413.00	13.20
90	208	423.40	18	201	408.00	15.40

Cost-Benefit of Agrotain with Surface Applied Urea No N Loss

Yield

bu/a

If N costs \$0.22/ lb N

214

213

211

208

If N costs \$0.38/ lb N

214

213

211

208

N rate

lb N/a

140

115

100

90

140

115

100

90

Return

\$/a

440.00

443.30

442.20

437.80

417.60

424.90

426.20

423.40

N Loss

lb N/a

28

23

20

18

28

23

20

18

With Agotain

Return

\$/a

430.49

435.49

435.41

431.69

408.09

417.09

419.41

417.29

Agrotain

Cost

\$/a

9.51

7.81

6.79

6.11

9.51

7.81

6.79

6.11

Lost

Return

\$/a

4.40

8.80

13.20

15.40

4.40

8.80

13.20

15.40

— Assume 20 % N Loss —

Return

\$/a

435.60

434.50

429.00

422.40

413.20

416.10

413.00

408.00

Yield

bu/a

212

209

205

201

212

209

205

201

Nitrification Inhibitors

Nitrification

$$NH_4^+ \xrightarrow{Nitrosomonas} NO_2^- \xrightarrow{Nitrobacter} NO_3^-$$

- □ Can occur in 2 3 weeks in most soils
 - Temperature > 50 °F
 - Soil pH > 5.5
 - Soil is aerated (not waterlogged)
- Nitrate loss
 - Leaching
 - Denitrification

Denitrification

$$NO_3^- \xrightarrow{bacteria} N_2$$

- Maximized in soils when:
 - Temperature > 60 °F
 - pH near 7.0
 - Large concentration of nitrate
 - Carbon compound is available
- Up to 100 lb N/a can be lost in 5 days
 - Conditions need to be favorable
 - In cold soils (40 °F) with low pH (near 5.0), denitrification is slower

Nitrification Inhibitors

- Interfere with nitrification process
 - Kill or impede metabolism of *Nitrosomonas*
- Advantage
 - Maintains N in NH₄⁺ form
 - Held by CEC
 - Less likely to be lost
- Effective for 3 to 6 weeks depending on environmental conditions

Nitrification Inhibitors

- Fall N applications
 - Hold N in NH₄+ form until it is < 40 °F and denitrification potential is reduced</p>
- Spring preplant applications
 - Hold N in NH₄+ form when crop demand is low and denitrification potential is high
- Highest probability of yield increase with nitrification inhibitors
 - Sandy soils
 - Poorly drained fine-textured soils

Sandy soils and NServe

Four year average effect of N timing and use of N Serve on corn yield at Hancock (Wolkowski, 1995)

N					NServe	
Timing [†]	NServe	Yield	Income	N Cost	Cost	Return [‡]
		bu/a	\$/a	\$/a	\$/a	\$/a
PP	No	116	255.20	47.60		207.6
SD	No	134	294.80	47.60		247.2
PP	Yes	121	266.20	47.60	8	210.6
SD	Yes	134	294.80	47.60	8	239.2

[†] 140 lb N/a was applied spring preplant (PP) or sidedressed (SD). NServe was applied at a rate of 2 pt/a.

[‡] Calculations were based on \$2.20/bu corn, \$0.34/lb N, and \$32/gal of NServe.

Impact on N application timing and use of NServe on corn yield, seven year average on a poorly drained Mollisol in Waseca, MN (Randall et al., 2003)

N					NServe	
Timing [†]	NServe [‡]	Yield	Income*	N Cost	Cost	Return
		bu/a	\$/a	\$/a	\$/a	\$/a
Fall	No	131	288.2	45.90		242.3
Fall	Yes	139	305.8	45.90	8	251.9
Spring	No	139	305.8	45.90		259.9
Split	No	145	319	45.90		273.1
LSD (0.0	1)	4				

[†] 135 lb N/a was applied as anhydrous ammonia in all treatments. Split application had 40% of the N applied in the spring and 60% sidedressed at V8.

[‡] NServe was applied at a rate of 2 pt/a.

^{*} Calculations were based on \$2.20/bu corn, \$0.34/lb N, and \$32/gal of NServe.

Effect of time and rate of N application and NServe on corn yield in Illinois (Hoeft, 1984).

N rate	NServe	—— Yield —— Fall Appl.	N cost	NServe cost	— Return [†] — Fall Appl.
lb N/a		bu/a	\$/a	\$/a	\$/a
0		66	0		144.86
100	No	100	34		185.47
100	Yes	124	34	8	230.13
150	No	124	51		221.13
150	Yes	154	51	8	278.98
200	No	142	68		243.63
200	Yes	158	68	8	270.76

[†] Calculations were based on \$2.20/bu corn, \$0.34/lb N, and \$32/gal of NServe.

Effect of time and rate of N application and NServe on corn yield in Illinois (Hoeft, 1984).

311 33				, , , , ,	
N rate	NServe	—— Yield —— Spring Appl.	N cost	NServe cost	— Return [†] — Spring Appl.
lb N/a		bu/a	\$/a	\$/a	\$/a
0			0		
100	No	144	34		282.04
100	Yes	134	34	8	252.10
150	No	161	51		302.34
150	Yes	159	51	8	289.93
200	No	173	68		311.66
200	Yes	172	68	8	301.49

[†] Calculations were based on \$2.20/bu corn, \$0.34/lb N, and \$32/gal of NServe.

Effect of time and rate of N application and NServe on corn yield in Illinois (Hoeft, 1984).

on com yield in illinois (necht, 1701).								
		Y	ield ——	N	NComic	— Ret	— Return [†] —	
N rate	NServe	Fall	Spring	cost	NServe cost	Fall	Spring	
		Appl.	Appl.			Appl.	Appl.	
lb N/a		bu/a	bu/a	\$/a	\$/a	\$/a	\$/a	
0		66		0		144.86		
100	No	100	144	34		185.47	282.04	
100	Yes	124	134	34	8	230.13	252.10	
150	No	124	161	51		221.13	302.34	
150	Yes	154	159	51	8	278.98	289.93	
200	No	142	173	68		243.63	311.66	
200	Yes	158	172	68	8	270.76	301.49	

[†] Calculations were based on \$2.20/bu corn, \$0.34/lb N, and \$32/gal of NServe.

Summary

- Both urease and nitrification inhibitors are tools to manage N loss
 - Profitable in today's economic climate
- Insure greatest probability of economic return
 - Know if environmental or management practices increase risk of N loss
- If N rates are reduced because of high fertilizer prices, inhibitors may be insurance against yield loss