

### Corn Silage Research - Where have we been and where are we going?

Joe Lauer
University of Wisconsin





### **Desirable Forage Characteristics**

- What makes a good forage? (Carter et al., 1991)
  - ✓ High yield
  - ✓ High energy (high digestibility)
  - ✓ High intake potential (low fiber)
  - ✓ High protein
  - ✓ Proper moisture at harvest for storage
- Ultimate test is animal performance
  - √ Milk2000 is our best predictor for performance (Schwab)
    - Shaver equation)

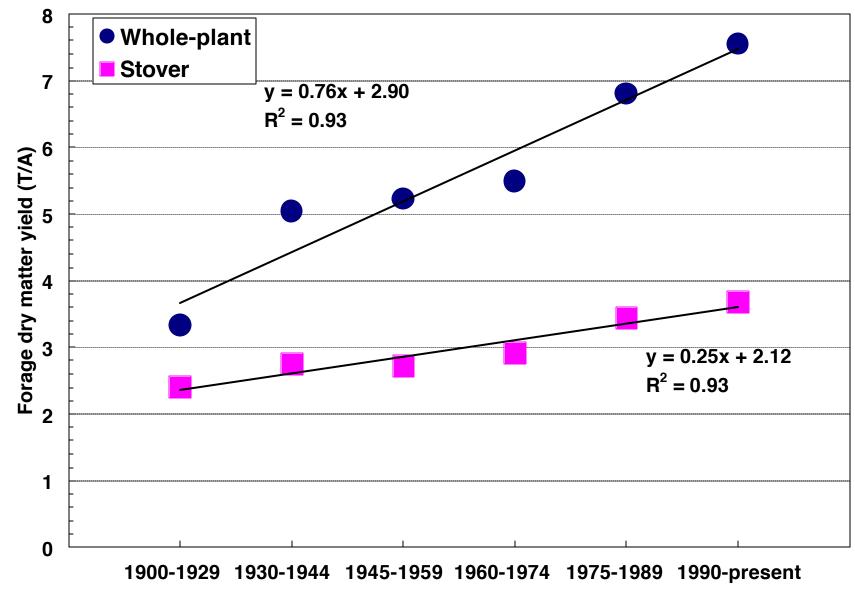




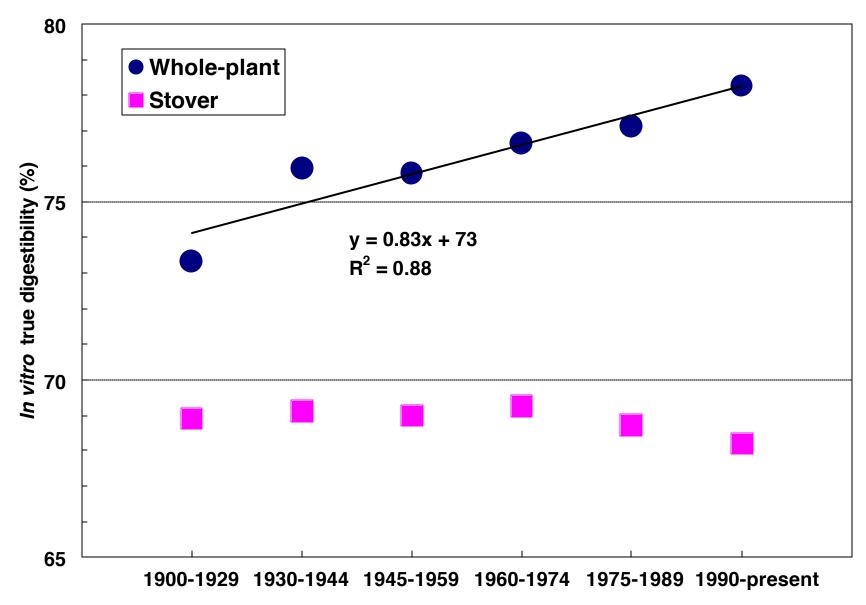
### The UW Corn Silage Team



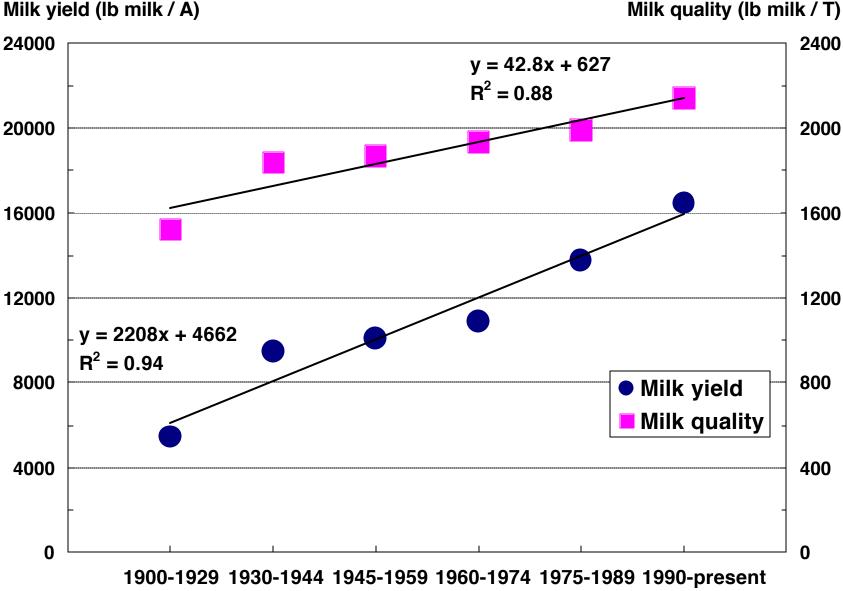
Dr. Jim Coors Corn Breeder


Dr. Randy Shaver Dairy Nutritionist

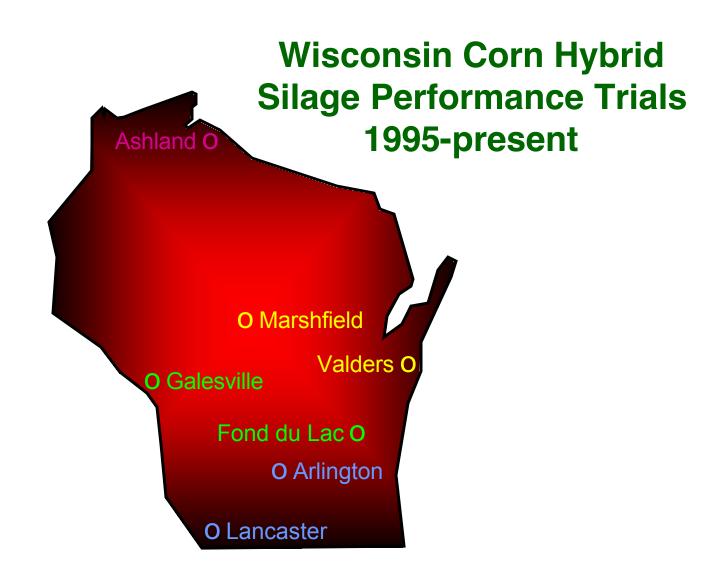





Dr. Joe Lauer Corn Agronomist







Relationship between corn forage dry matter yield and era of release for whole-plant and stover.



Relationship between corn forage *in vitro* true digestibility and era of release for whole-plant and stover.



Relationship between corn forage milk yield/quality and era of release.





## NIRS Global Equation Calibration for *in vitro* True Digestibility (602 samples submitted)

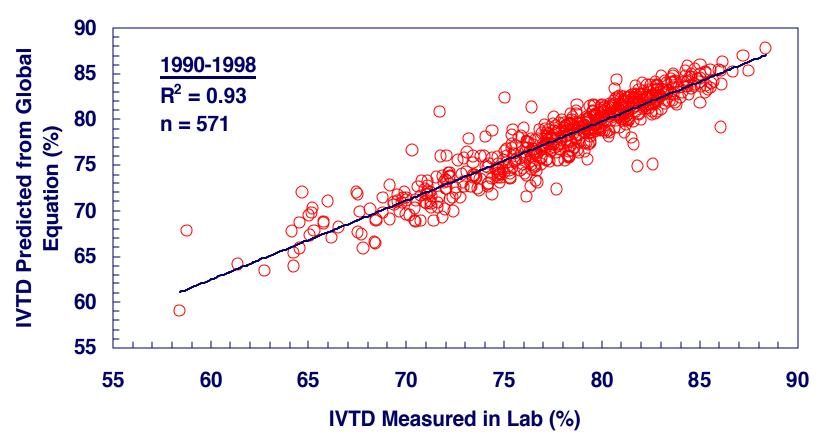





Table 15. North Central Zone - Early Maturity Silage Trial 2000

|                    |              |       | ŀ     | (erne | el  |     |     |     | ·   |        |      | ···       | MAR   | VAL   |
|--------------------|--------------|-------|-------|-------|-----|-----|-----|-----|-----|--------|------|-----------|-------|-------|
|                    |              | Yield | Moist | Milk  | CP  | ADF | NDF | IVD | CWD | Starch | MIL  | K PER     | Yield | Yield |
| BRAND              | HYBRID       | T/A   | %     | %     | %   | %   | %   | %   | %   | %      | TON  | ACRE      | T/A   | T/A   |
| Trelay             | 2008         | 8.3 * | 55.3  | 30    | 7.0 | 25  | 52  | 72  | 46  | 28     | 2670 | 22300 *   | 8.3 * | 8.3 * |
| Carhart's Blue Top | CX8500A      | 7.4   | 58.7  | 50    | 7.3 | 24  | 49  | 73  | 46  | 29     | 2770 | * 20700   | 7.9 * | 7.0   |
| NK Brand           | N27-M3       | 7.0   | 59.2  | 30    | 7.1 | 24  | 48  | 74  | 45  | 31     | 2810 | * 19800   | 7.4   | 6.7   |
| Pioneer            | 39D81        | 5.2   | 59.6  | 10    | 7.1 | 26  | 53  | 71  | 45  | 26     | 2620 | 13600     | 5.7   | 4.6   |
| Renk               | RK394        | 7.8 * | 59.6  | 30    | 7.0 | 28  | 55  | 70  | 46  | 24     | 2580 | 20200     | 8.3 * | 7.3   |
| Dairyland          | Stealth 1280 | 7.7 * | 59.9  | 30    | 7.1 | 25  | 52  | 72  | 45  | 28     | 2690 | 20800     | 8.3 * | 7.1   |
| 85-DAY HYBRID T    | RIAL AVERAC  | SE##  | 60.3  |       |     |     |     |     |     |        |      |           |       |       |
| LG Seeds           | LG2367       | 7.3   | 60.4  | 30    | 6.9 | 26  | 53  | 72  | 47  | 27     | 2700 | 19800     | 8.3 * | 6.3   |
| Carhart's Blue Top | CX290A       | 7.4   | 60.6  | 40    | 7.2 | 22  | 46  | 75  | 45  | 34     | 2900 | * 21300   | 7.2   | 7.5 * |
| Dairyland          | Stealth 1289 | 7.0   | 60.7  | 20    | 8.1 | 28  | 55  | 70  | 46  | 24     | 2570 | 18100     | 7.3   | 6.7   |
| Brown              | 2080         | 6.8   | 61.3  | 40    | 7.0 | 23  | 48  | 74  | 45  | 31     | 2830 | * 19200   | 6.5   | 7.1   |
| Carhart's Blue Top | CX1187A      | 6.9   | 61.4  | 30    | 7.2 | 25  | 51  | 73  | 46  | 29     | 2780 | * 19200   | 6.8   | 7.0   |
| 90-DAY HYBRID T    |              | SE##  | 62.9  |       |     |     |     |     |     |        |      |           |       |       |
| Dekalb             | DKC39-45     | 7.1   | 63.8  | 40    | 6.8 | 23  | 47  | 74  | 45  | 31     | 2920 | * 20600   | 6.7   | 7.4 * |
| NK Brand           | N2555BT      | 7.1   | 64.2  | 40    | 7.4 | 26  | 51  | 72  | 45  | 27     | 2760 | * 19800   | 7.7 * | 6.6   |
| Ramy Seed          | PG1455       | 8.6 * | 64.6  | 60    | 7.3 | 25  | 50  | 73  | 46  | 28     | 2850 | * 24500 * | 8.7 * | 8.4 * |
| Golden Harvest     | H6675        | 8.2 * | 66.4  | 40    | 7.7 | 25  | 50  | 72  | 44  | 26     |      | * 22900 * | 8.4 * |       |
| MEAN               |              | 7.3   | 61.1  | 40    | 7.2 | 25  | 51  | 72  | 46  | 28     | 2750 | 20200     | 7.6   | 7.1   |
| LSD(0.10)**        |              | 0.9   | 3.9   | 10    | 0.5 | 3   | 4   | 3   | 1   | 4      | 200  | 3100      | 1.1   | 1.1   |



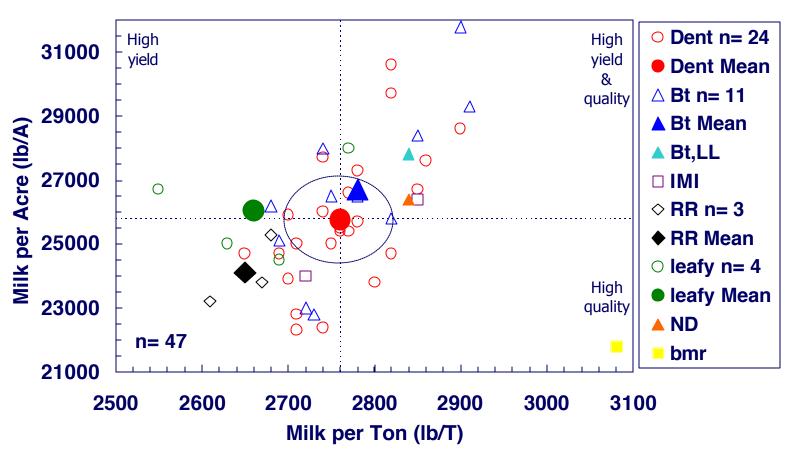
## Calculating Milk per Ton Milk per Acre = Yield x Milk per Ton

#### Milk1991

- Dry matter intake estimated using NDF
- Net energy of lactation (Mcal/lb) estimated using ADF

#### Milk1995

- Dry matter intake estimated using NDF
- Net energy of lactation (Mcal/lb) estimated using IVD


#### Milk2000

- Dry matter intake estimated using NDF and Cell wall digestibility
  - ✓ Base dry matter intake adjusted 0.374 lb. per 1% unit change in CWD above or below the trial average CWD (Allen et al.)
- Starch digestibility is adjusted for dry matter content and kernel processing
- Net energy of lactation (Mcal/lb) estimated using multicomponent summative equation approach



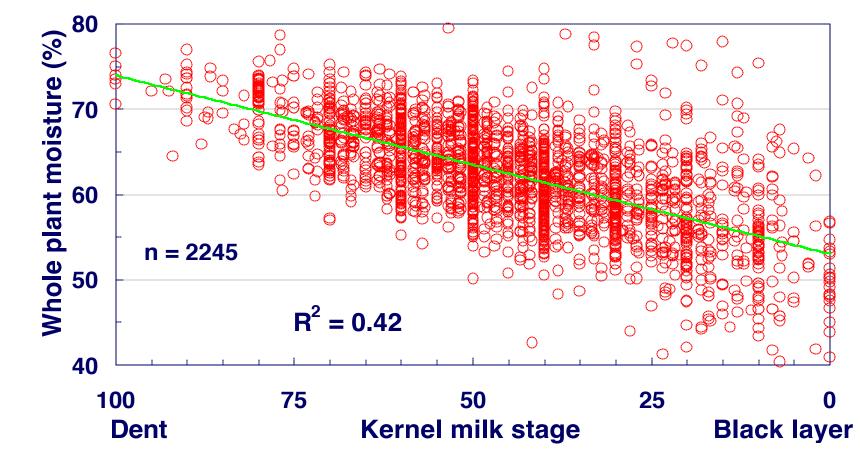


### 2001 Wisconsin Corn Hybrid Performance Trial Results – Table 12 Southern Zone, Late Maturity Trial at Arlington and Lancaster





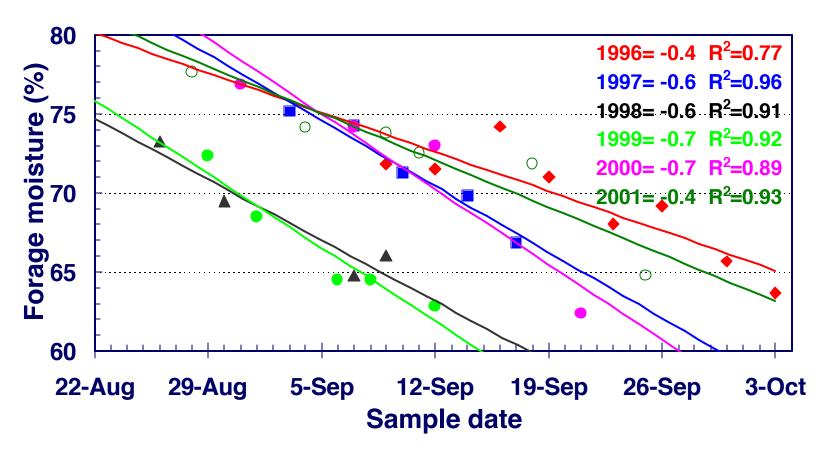





http://corn.agronomy.wisc.edu/select/



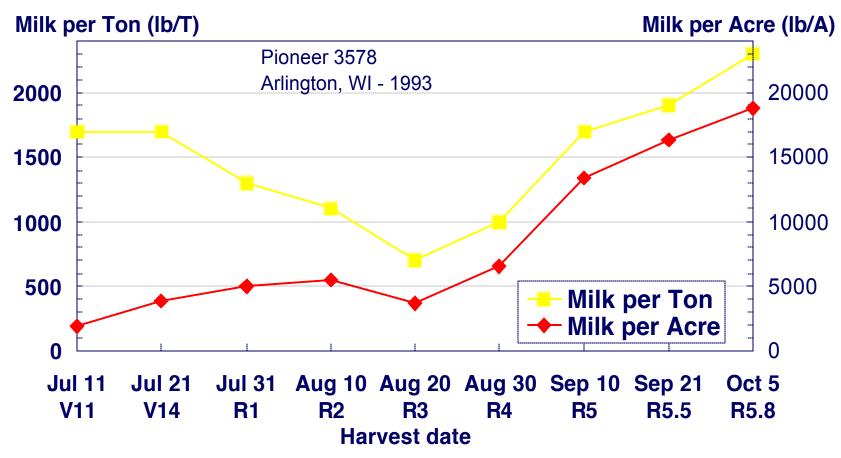



## Relationship Between Forage Moisture and Kernel Milk Stage (1990 - 2000)





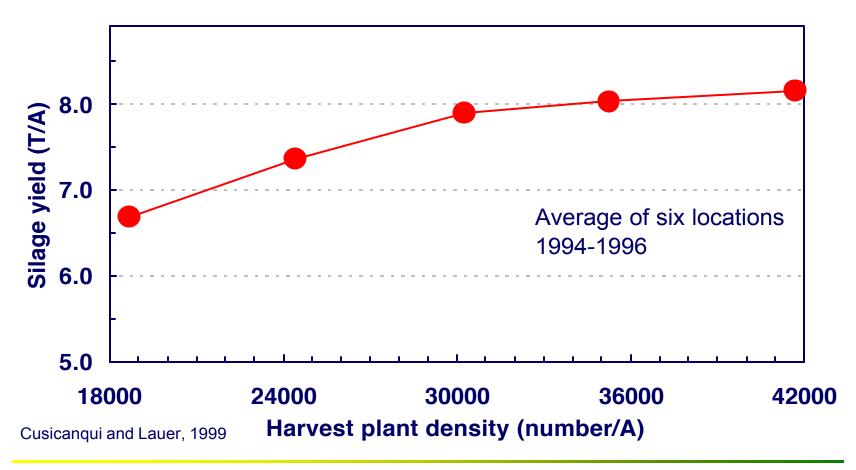



## Corn Silage Drydown Rate in Manitowoc County, WI.





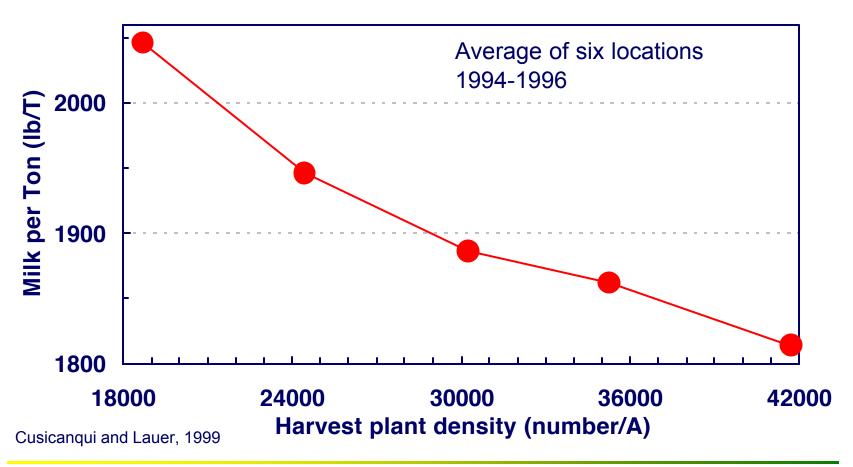



## Corn Silage Yield and Quality Changes During Development





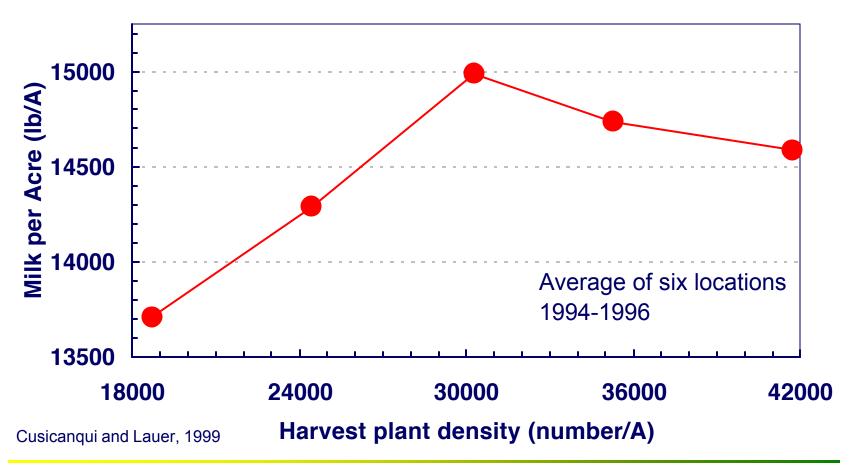



## Relationship between corn silage yield and plant density in WI





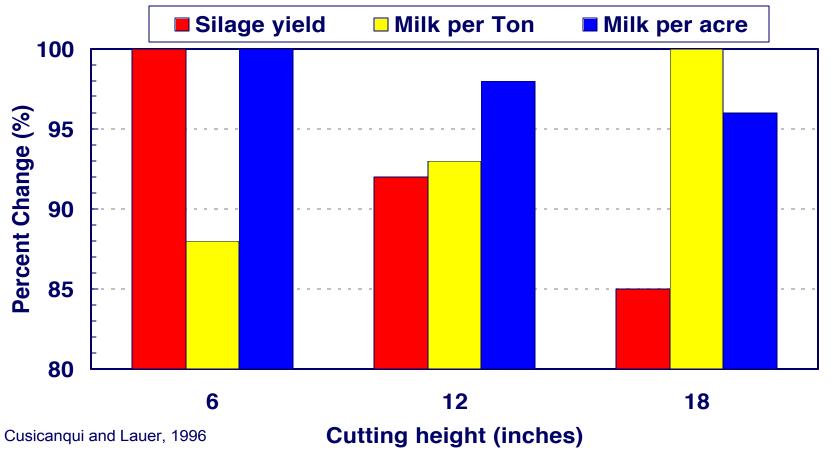



### Relationship between corn silage Milk per Ton and plant density in WI





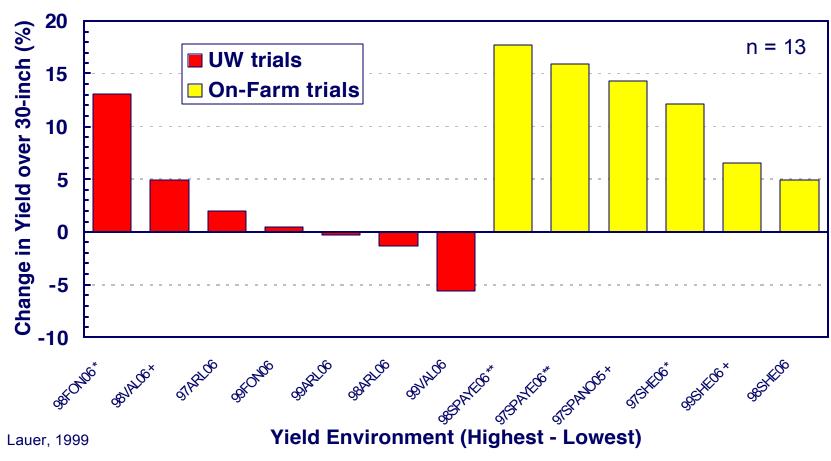



### Relationship between corn silage Milk per Acre and plant density in WI



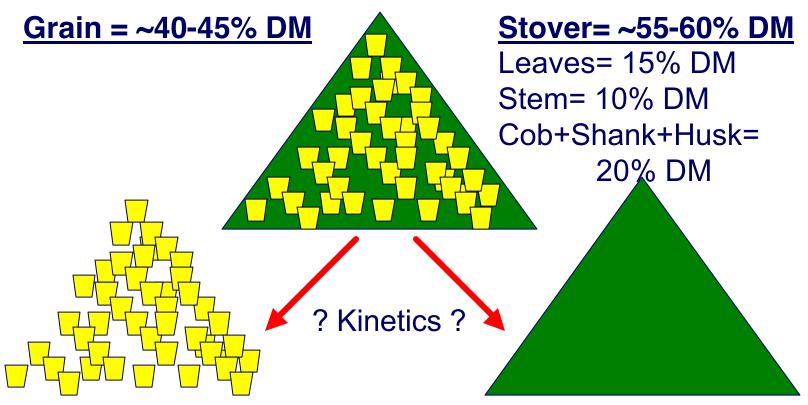





## Relative change in silage yield & quality at different cutting heights during 1996








### Corn Silage Yield Response to Row Spacing in WI (UW and On-Farm trials)





#### **Corn Silage**



80 to 100% digestible

- Kernel maturity
- Starch digestibility

40 to 55% digestible

Cell wall digestibility



## Factors that Affect Starch Availability in Corn or Corn Silage

- Grain type (flint vs dent)
- Starch polymers
- Endosperm type
- Test Weight: highly related to texture but determined at grain maturity, not typical silage harvest maturity
- Kernel Texture
- Particle Size
- Processing
- Moisture
- Fermentation





#### Floury endosperm.

✓ More "open" in structure yet opaque in appearance.

✓ Dent corn has about equal proportions of horny to floury starch (vs popcorn w/ mostly vitreous starch.

Pericarp(bran)

#### Germ scutellum and embryonic axis.

✓ Germ larger in short season corn and in HOC (at the expense of starch).

✓ In HOC, each 1% unit increase in oil, expect 1.3% unit lower starch.

Diagram Source: Hoseney, 1986. Principles of Cereal Science and Technology. Am Assoc of Cereal Chemists, St. Paul, MN

#### floury endosperm)

Dent (due to soft

BRAN

#### Vitreous endosperm.

✓ Also called horneous, corneous or hard endosperm.

✓ Primary starch in flint corn.

✓ Source of dry milling grits.

✓ Tightly compacted and translucent.

✓ Higher in CP than floury starch.

✓ More of this starch in mature, high test weight kernels.

✓ The last starch laid down in the kernel during the last few weeks of development.

### Hilum or abscission layer. Also called black layer.

✓ Caused by collapse and compression of several layers of cells at physiological maturity.

✓ Cool weather can cause premature BL.



#### **Summary**

- Many ways to achieve high quality corn silage
  - ✓ Many ways to "skin the cat"
  - ✓ Hybrid selection depends upon objectives of farmer
  - ✓ Management and hybrid selection go hand-in-hand
- Future direction
  - ✓ Starch degradation
  - √ Stover digestibility (digestion kinetics)
  - ✓ Continued improvement of Milk2000
  - ✓ Key: Animal feeding verification studies





# What Do We Want in Grain versus Silage Hybrids?

| Trait           | Grain         | Silage          |  |  |
|-----------------|---------------|-----------------|--|--|
| Grain yield     | High          | Adequate        |  |  |
| Forage yield    | Adequate      | High            |  |  |
| Hybrid range    | 60 bu/A       | 8,000 lb Milk/A |  |  |
| Stalks          | Standability  | Digestibility   |  |  |
| Leaves          | Unknown       | Digestibility   |  |  |
| Kernel hardness | Hard          | Soft            |  |  |
| Plant drydown   | "Stay-green"  | Synchronous     |  |  |
| Plant maturity  | "Full-season" | 5-10 d longer   |  |  |





### **Yield and Digestibility of Corn Plant Parts**

| Tissue         | Percent Yield | Digestibility (%) |  |  |
|----------------|---------------|-------------------|--|--|
| Leaf blades    | 11            | 73                |  |  |
| Leaf sheaths   | 4             | 63                |  |  |
| Stalk+tassel   | 19            | 60                |  |  |
| Cob+husk+shank | 22            | 72                |  |  |
| Kernels        | <u>44</u>     | 94                |  |  |
| Whole plant    | 100           | 71                |  |  |

Adapted from Deinum and Struik, 1989





#### **Brown-midrib Hybrids**



- Single genes
  - ✓ bm1, bm2, bm3, bm4
  - ✓ First discovered in 1924
- Less lignin
  - ✓ higher digestibility
- Agronomics??
- Many studies show an increase in intake, milk yield, or body weight
  - ← +2.8 kg/day milk yield (Oba and Allen, 1999)
- Effects seem somewhat unpredictable in real life
  - Most benefits seen with highproducing animals consuming high-forage diets





### **Leafy Hybrids**



- Single gene, Lfy
- 2 to 4 more leaves above the ear
- Increased dry matter production
- Quality improvement?
  - ✓ Softer kernels
- Animal feeding trials
  - ✓ No overall advantage for lactating dairy cows
    - Kuehn et al., 1998
    - Bal et al., 1998





### **High-quality Protein**



- Single genes
  - ✓ Opaque2 (o2)
  - ✓ Floury2 (fl2)
- Increased lysine and tryptophan
- Softer kernel texture
- Decreased endosperm size - Agronomics?
- Animal feeding trials
  - ✓ Opaque2 No effect on milk production
    - Andrew et al., 1979
    - Beek and Dado, 1998

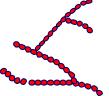




### **High-oil hybrids**



- High ratio of embryo to endosperm
- Oil has 2.25 X more energy than starch
- High oil means >6% oil
  - ✓ Normal corn 3.5 to 5%
- Top-cross hybrids
  - ✓ 7 to 7.5% oil
- Animal feeding trials
  - ✓ No effect on milk production
    - Atwell et al., 1988
    - Spahr et al., 1975
    - La Count et al., 1995
    - Dhiman et al., 1996






### **Waxy Hybrids**



- Single gene wx1
- Amylose replaced by amylopection



Amylose

Amylopectin

- Primary used in wet milling and as feed grain
- No known advantage for use as silage





### Other Corn Hybrid Types

- Dwarf corn
- "Sugar" corn
- Profusely-tillering
- Autotetraploid
- Teosinte
- Sweet corn
- Pop corn





### Wisconsin Corn Hybrid Silage Performance Trial Measurements

#### Agronomic

- ✓ Yield: Tons Dry matter / A
- ✓ Moisture: %
- ✓ Kernel milk stage: %

#### Quality (NIR)

- ✓ Crude protein : %
- ✓ Acid detergent fiber: %
- ✓ Neutral detergent fiber: %
- ✓ *In vitro* true digestibility: %
- ✓ Cell wall digestibility: %
- ✓ Starch content: %

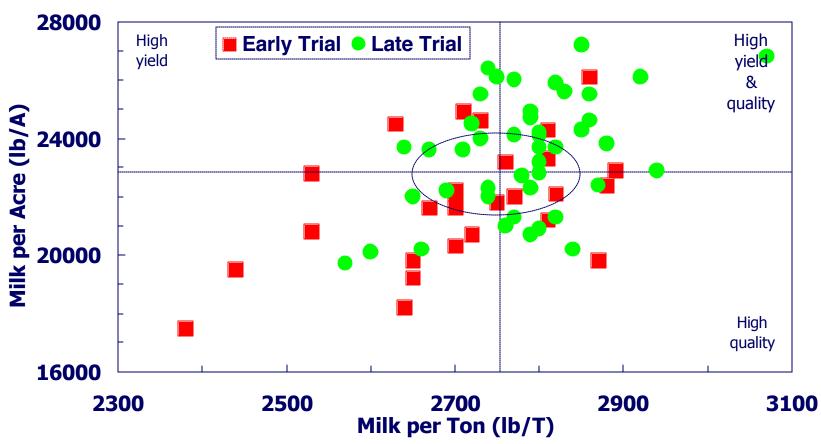
#### Performance index

- Milk per ton: The amount of milk production from one ton of silage using the quality measures.
   (Estimate is based on a standard cow body weight of 1350 pounds and milk production level of 90 pounds milk per day at 3.8 percent fat.)
- ✓ <u>Milk per acre</u> = Milk per ton
  X Dry matter yield per acre





## Selection of high and low quality corn silage check hybrids


- 1995 to 1997
  - ✓ Checks selected using data derived by UW silage consortium
- North Central zone:
  - ✓ High: Pioneer 3757E
  - ✓ Low: Mycogen 4120
- South Central zone:
  - ✓ High: Pioneer 3573
  - ✓ Low: Pioneer 3527
- Southern zone
  - ✓ High: Cargill 4327
  - ✓ Low: Pioneer 3417

- 1998 to 2000
  - ✓ Selection pressure for yield (must be 1.05 times better than the trial average)
  - ✓ Sorted by NDF to pick high and low
  - ✓ Emphasis on CWD and Milk95 per Ton
  - ✓ Hybrids change every year
- 2001 and beyond
  - ✓ Same as above, except emphasize Milk2000 per Ton



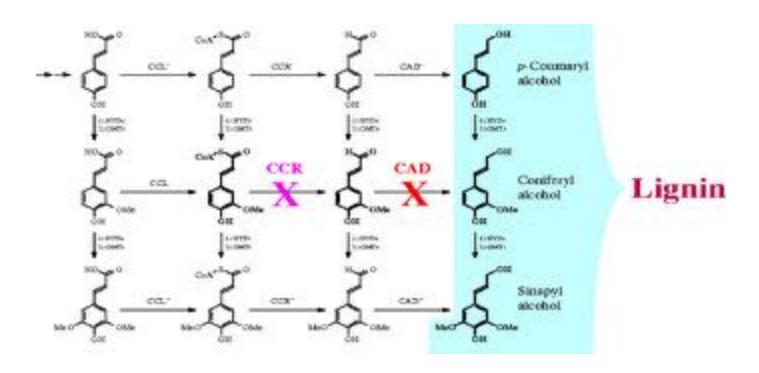


### **Corn Hybrid Silage Performance in the South Central Production Zone - 2000**








## How Should We Manage Corn Grown for Grain versus Silage?

| Trait                 | Grain              | Silage                 |  |  |  |
|-----------------------|--------------------|------------------------|--|--|--|
| Plant population      | 26,000-30,000      | 2,000-3,000 more       |  |  |  |
| Planting date         | Early              | Early to 7 d later     |  |  |  |
| Row spacing           | 3-5% w/ narrow     | 7-9% w/ narrow         |  |  |  |
| Soil fertility        | Adequate           | Greater                |  |  |  |
| Pest resistance       | Important          | More important         |  |  |  |
| <b>Cutting height</b> | Ear                | <b>Yield v Quality</b> |  |  |  |
| Harvest timing        | <b>Drying cost</b> | Sour v Moldy           |  |  |  |





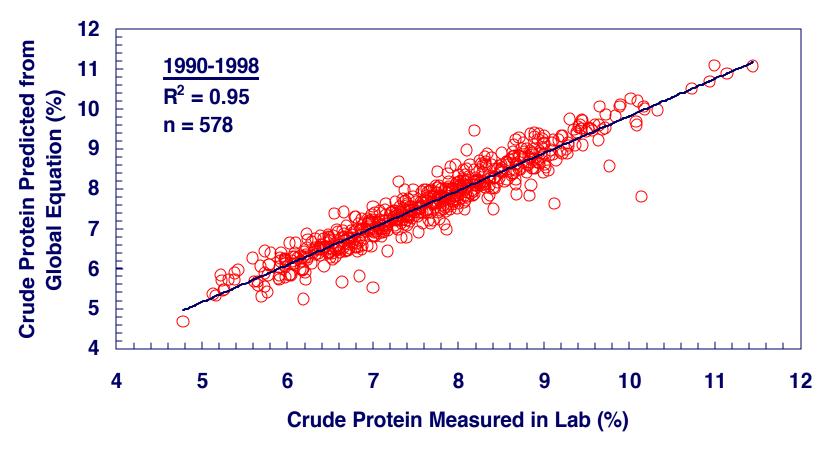
#### What's Next?







#### What's Next?

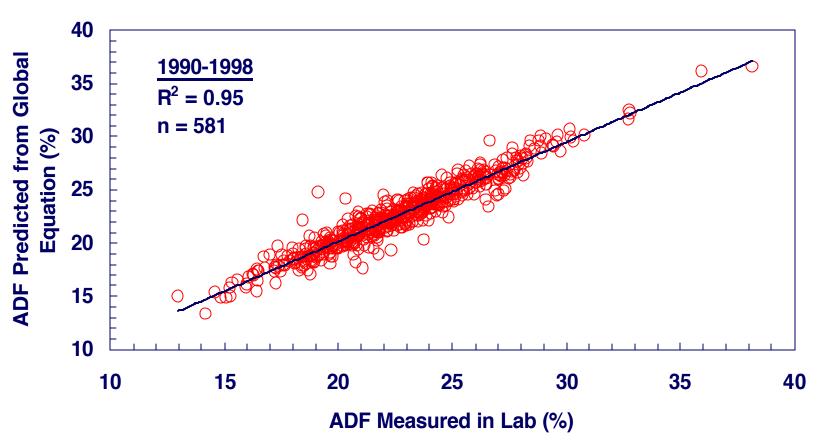

- Improved dry matter production & adaptation
- Increased digestibility on DM and fiber basis
- Increased protein
- Modified kernel texture







### NIRS Global Equation Calibration for Crude Protein (602 samples submitted)

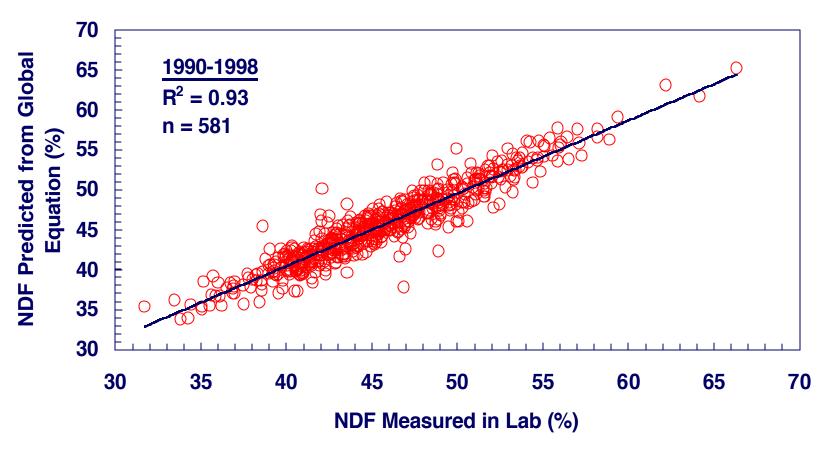







#### NIRS Global Equation Calibration for ADF

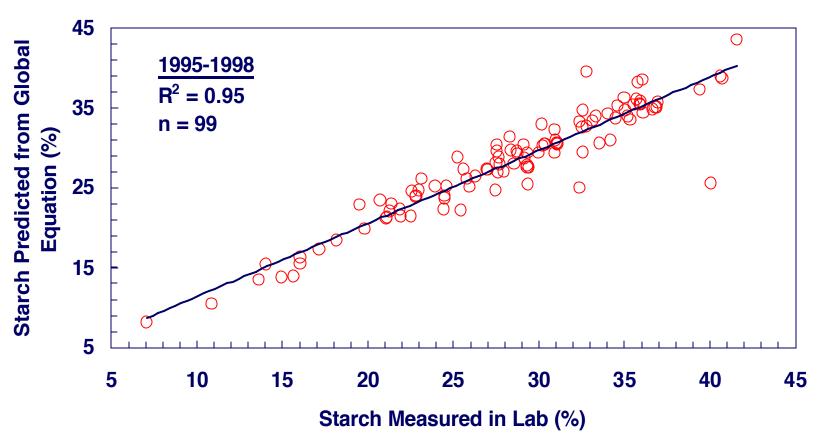
(602 samples submitted)








#### NIRS Global Equation Calibration for NDF


(602 samples submitted)







### NIRS Global Equation Calibration for Starch Content (104 samples submitted)









### 2000 Wisconsin Corn Performance Trials - Silage Summary

|             | 1990-1999 |       | 2  | 2000  | Percent |
|-------------|-----------|-------|----|-------|---------|
| Location    | N         | Yield | N  | Yield | Change  |
|             |           | T/A   |    | T/A   |         |
| Arlington   | 388       | 9.3   | 66 | 9.1   | - 2     |
| Lancaster   | 311       | 7.7   | 66 | 7.8   | +1      |
| Fond du Lac | 284       | 8.7   | 77 | 7.6   | - 13    |
| Galesville  | 284       | 8.0   | 77 | 8.0   | + 0     |
| Marshfield  | 401       | 6.8   | 55 | 7.9   | + 16    |
| Valders     | 328       | 7.1   | 55 | 7.6   | +7      |
| Ashland     | 109       | 6.7   | 16 | 5.5   | - 18    |





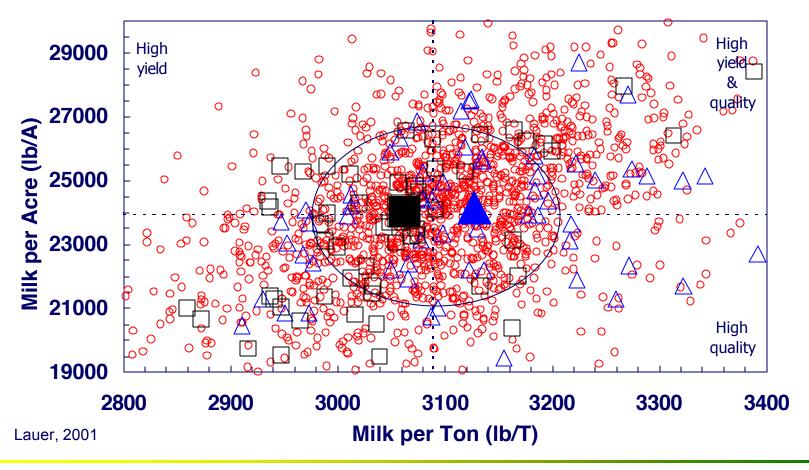
## Top 10 Corn Silage Hybrids by Production Zone during 2000

| Hybrid             | Yield | Hybrid             | Yield | Hybrid                 | Yield |
|--------------------|-------|--------------------|-------|------------------------|-------|
| Southern zone      | T/A   | South Central zone | T/A   | North Central zone     | T/A   |
| Kaltenberg K8110LF | 9.6   | Kaltenberg K8108LF | 9.6   | Jim Coors 1            | 10.3  |
| Dekalb DK611       | 9.5   | NK Brand N48-V8    | 9.6   | Golden Harvest H2387   | 9.2   |
| Cornelius C408YG   | 9.5   | Dahlco 2660        | 9.4   | Jim Coors 2            | 9.0   |
| Wyffels W7090      | 9.5   | Pioneer 34G82      | 9.3   | Garst 8640             | 9.0   |
| Spangler 7558      | 9.3   | Renk RK668         | 9.3   | Pioneer 37R71          | 8.9   |
| Pioneer 34B23      | 9.3   | AgriPro AP9280     | 9.3   | Dairyland Stealth 1203 | 8.7   |
| Pioneer 35R58      | 9.2   | Asgrow RX452YG     | 9.3   | Carhart's CX1195       | 8.6   |
| Renk RK775         | 9.2   | Pioneer 35R57      | 9.2   | Carhart's CX102R       | 8.6   |
| LG Seeds LG2526SP  | 9.1   | Carhart's CX130A   | 9.2   | Ramy Seed PG1455       | 8.6   |
| Renk RK896         | 8.9   | Pioneer 35R60      | 9.2   | Jim Coors 3            | 8.5   |





## Performance of silage quality check hybrids in WI (1995-2000, n= 61 trials)

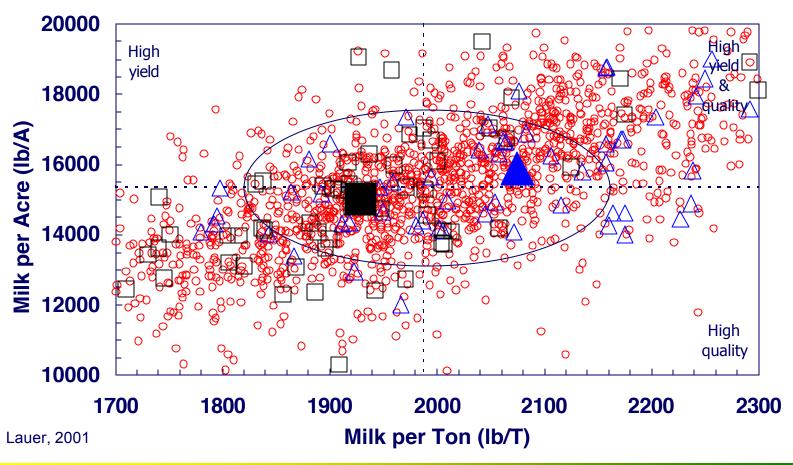

|                   |                | Check hybrids for quality |       |  |
|-------------------|----------------|---------------------------|-------|--|
| Trait             | Average Hybrid | High                      | Low   |  |
| Yield (T/A)       | 7.63           | 7.63                      | 7.75  |  |
| Moisture (%)      | 62.0           | 61.0                      | 61.7  |  |
| Kernel milk (%)   | 45             | 44                        | 50    |  |
| Crude protein (%) | 7.3            | 7.3                       | 7.3   |  |
| ADF (%)           | 23.2           | 22.4                      | 23.7  |  |
| NDF (%)           | 45.7           | 44.4                      | 46.5  |  |
| IVD (%)           | 77.8           | 78.4                      | 77.4  |  |
| CWD (%)           | 51.5           | 51.6                      | 51.5  |  |
| Starch (%)        | 30.2           | 32.0                      | 29.5  |  |
| Milk95T (lb/T)    | 2020           | 2110                      | 1960  |  |
| Milk95A (lb/A)    | 15300          | 15800                     | 15000 |  |
| Milk00T (lb/T)    | 3110           | 3150                      | 3090  |  |
| Milk00A (lb/A)    | 23700          | 23900                     | 23800 |  |





#### **Corn Silage Performance in WI**

1995-2000, normalized, checks ▲= high quality, ■= low quality Milk2000, Oval = ± 1 std, Hybrid tests: n = 1714, Trials: n = 61








#### **Corn Silage Performance in WI**

1995-2000, normalized, checks  $\triangle$  = high quality,  $\blacksquare$  = low quality Milk95, Oval =  $\pm$  1 std, Hybrid tests: n = 1714, Trials: n = 61







# Comparisons of high and low quality check hybrids for Milk per Ton in WI trials (1995-2000, n= 61)

#### Milk95

- ✓ Head to head comparison: 74% of trials
- ✓ Statistical comparison: 90% of trials

#### Milk2000

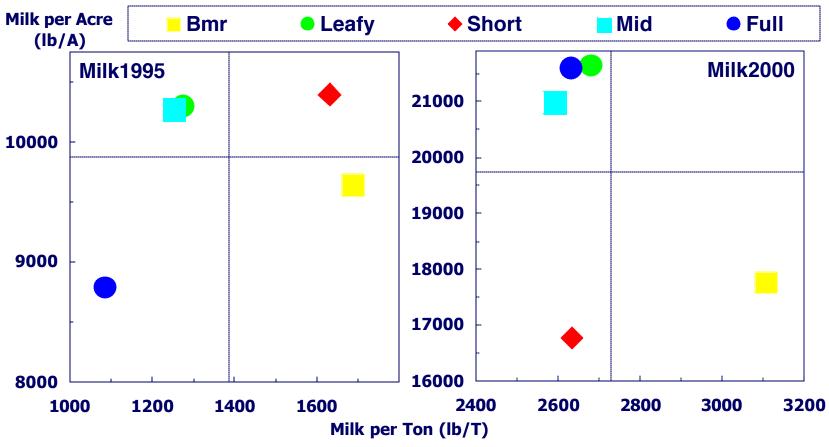
- ✓ Head to head comparison: 62% of trials
- ✓ Statistical comparison: 93% trials

Statistical comparison = Frequency where high quality check either significantly beat the low quality check or it was not different (criteria = 1 standard deviation).








#### Relative Performance of Corn Hybrids Tested in Six Environments (Coors, 2000)

| Hybrid                | RM  | YLD | MST  | СР | ADF | NDF | IVD | CWD | Starch |
|-----------------------|-----|-----|------|----|-----|-----|-----|-----|--------|
|                       |     | T/A | %    | %  | %   | %   | %   | %   | %      |
| Short-season (D1297)  | 98  | 6.4 | 52.8 | 7  | 24  | 49  | 73  | 45  | 30     |
| Mid-season (P35R58)   | 105 | 8.2 | 63.9 | 7  | 27  | 53  | 70  | 44  | 25     |
| Leafy (NK48V8/4687)   | 105 | 8.1 | 64.7 | 7  | 27  | 53  | 70  | 44  | 22     |
| Bmr (CF657)           | 110 | 5.7 | 67.5 | 7  | 25  | 50  | 75  | 50  | 27     |
| Full-season (P33A14A) | 113 | 8.1 | 68.6 | 7  | 29  | 55  | 69  | 43  | 20     |



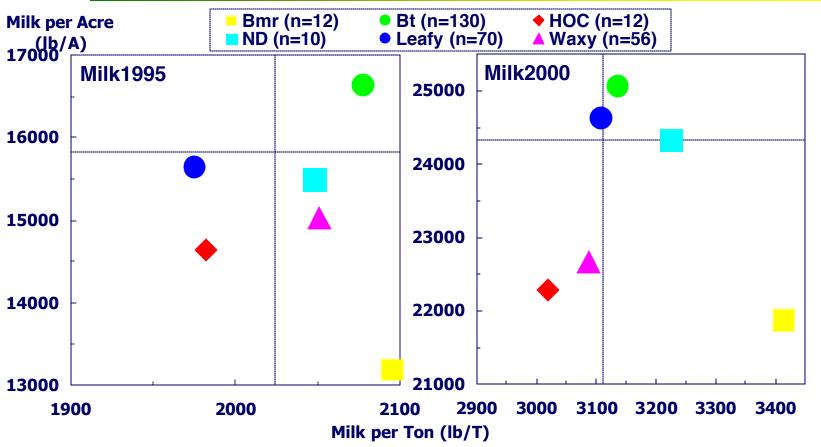


### Relative Performance of Corn Hybrids Tested in Six Environments (Coors, 2000)








# Relative Performance of Corn Hybrid Types Tested in the UW Silage Trials (1995-2000)

| Hybrid      | N    | YLD | MST | СР  | ADF | NDF | IVD | CWD | Starch |
|-------------|------|-----|-----|-----|-----|-----|-----|-----|--------|
|             |      | T/A | %   | %   | %   | %   | %   | %   | %      |
| Bmr         | 12   | 6.3 | 68  | 7.6 | 23  | 47  | 80  | 58  | 28     |
| Bt          | 130  | 7.9 | 62  | 7.4 | 23  | 45  | 78  | 51  | 31     |
| HOC         | 12   | 7.4 | 60  | 7.6 | 23  | 46  | 77  | 50  | 32     |
| ND          | 10   | 7.4 | 66  | 8.2 | 23  | 46  | 78  | 53  | 31     |
| Leafy       | 70   | 7.9 | 63  | 7.6 | 24  | 46  | 78  | 52  | 29     |
| Waxy        | 56   | 7.3 | 62  | 7.7 | 23  | 45  | 78  | 51  | 32     |
| All hybrids | 2407 | 7.8 | 62  | 7.5 | 23  | 45  | 78  | 51  | 31     |





### Relative Performance of Corn Hybrid Types Tested in the UW Silage Trials (1995-2000)







#### **Criteria for Selecting Silage Hybrids**

- Grain yield: allows flexibility (dual purpose)
- Whole plant silage yield
- Relative maturity: 5-10 days later than grain hybrids
- Standability: allows flexibility
- Pest resistance
- Silage quality

"Variation for silage yield and quality exists among commercial hybrids in Wisconsin."







### Silage Problems When Harvest Timing Is Off

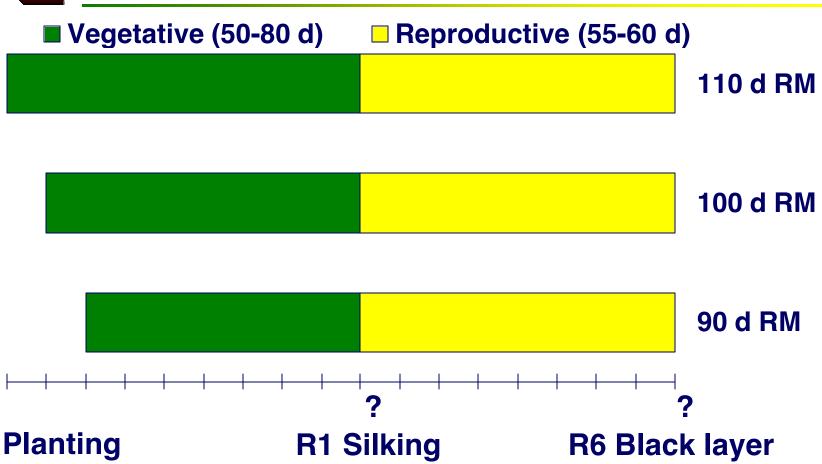
- Too wet (> 70%)
  - ✓ reduced yield
  - ✓ souring
  - √ seepage
  - ✓ low intake by dairy cows.

- Too dry (< 60%)</li>
  - ✓ reduced yield
  - ✓ cause molds to develop
  - ✓ lowers digestibility, protein and vitamins A and E.





### Kernel Milk Stage "Triggers" for Timing Silage Harvest


| Silo structure                 | Ideal moisture content | Kernel milk stage "trigger" |
|--------------------------------|------------------------|-----------------------------|
|                                | %                      | %                           |
| Horizontal bunker              | 70 to 65               | 80                          |
| Bag                            | 70 to 60               | 80                          |
| Upright concrete stave         | 65 to 60               | 60                          |
| <b>Upright oxygen limiting</b> | 60 to 50               | 40                          |

<sup>&</sup>quot;trigger": kernel milk stage to begin checking silage moisture Silage moisture decreases at an average rate of 0.5% per day during September





### Time Span of Vegetative and Reproductive Stages During the Life Cycle of Corn







### In-season Guidelines for Predicting Corn Silage Harvest Date

- Note hybrid maturity and planting date of fields intended for silage.
- Note tasseling (silking) date.
  - ✓ Kernels will be at 50% kernel milk (R5.5) about 42 to 47 days after silking.
- After milkline moves, use kernel milk triggers to time corn silage harvest.
  - ✓ Use a drydown rate of 0.5% per day to predict date when field will be ready for the storage structure.
  - ✓ See <a href="http://cf.uwex.edu/ces/ag/silagedrydown/">http://cf.uwex.edu/ces/ag/silagedrydown/</a>
- Do final check prior to chopping.





#### **Special Situations**



- Drought
- •Hail
- •Frost
- •Uneven development







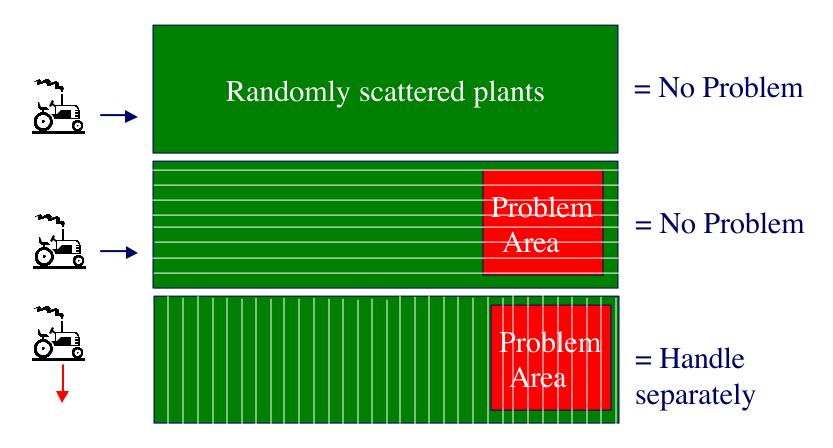


### Corn Silage Response to Hail Damage during 2000 at Arlington, WI

| Growth stage | Leaf removal | Yield | Moisture | Kernel milk |
|--------------|--------------|-------|----------|-------------|
|              | (%)          | (T/A) | (%)      | (%)         |
| <b>V7</b>    | 100          | 8.2   | 64       | 40          |
| V10          | <b>50</b>    | 8.5   | 64       | 50          |
|              | 100          | 7.0   | 63       | 50          |
| R1           | 25           | 7.3   | 69       | 40          |
|              | <b>50</b>    | 7.4   | 66       | 40          |
|              | 100          | 2.8   | 70       | 20          |
| R4           | 25           | 8.8   | 65       | 50          |
|              | <b>50</b>    | 8.1   | 65       | 40          |
|              | 100          | 5.1   | 53       | 40          |
| Check        | 0            | 8.9   | 63       | 50          |
| LSD(0.10)    |              | 1.4   | 4        | 20          |






#### Harvesting Corn Silage from Fields with Uneven Development

- Avoid layering plant material differing in moisture in silo.
  - ✓ Too wet Yield, quality and seepage losses
  - ✓ Too dry Potential for mold development and mycotoxin problems.
- Begin chopping when majority (>50%) of the field is at the proper moisture.
- Need good mixing of plant material at chopper and silo.
  - ✓ Random uneven plants = no problem
  - ✓ Managing problem field areas depends upon row orientation.
    - Each round passes through uneven problem area = no problem
    - Each round passes through uniform area = handle areas separately
  - ✓ Separately manage whole fields that differ in moisture





#### Harvesting Corn Silage from Fields with Uneven Development







## Handling Corn Damaged By Autumn Frost

- If frost-kill occurs:
  - ✓ before ½ milkline harvest as WP silage. Silage yield and quality trade-off exists.
  - ✓ at ½ milkline allow field dry-down to desired moisture content for harvest as high-moisture corn.
  - ✓ at black-layer follow usual harvest and handling procedures for highmoisture or dry grain.
- Usually must wait to chop 5 to 7 days after a frost before whole-plant moisture is at acceptable value for storage structure
  - ✓ Allow to field-dry to < 70% moisture</p>
  - ✓ Large acreages will need to be covered quickly
  - ✓ Alternative: add 300-400 lb Wheat Mids or Corn Gluten Feed per ton silage to lower moisture content from 75% to 65% and raise energy content (Shaver).
- Store in horizontal silos (bunkers, bags, or drive-over piles) to minimize seepage losses.





### Yield and Pricing of Drought Stressed Corn (grain and silage)

#### Grain

- ✓ lower yield
- √ test weight (discounts may apply)

#### Silage

- ✓ 1 Ton silage per 5 bushels grain (Jorgensen and Crowly, 1972)
- ✓ If not pollinated, expect to harvest 1 ton of 30% dry matter per ft. of height, excluding the tassel
- ✓ Feed value is 75 to 95% of normal silage





### Influence of Drought Stress on Corn Development and Yield

- Drought stress prior to pollination
  - √ reduced ear length
  - √ reduced number of potential kernels
- Drought stress after pollination
  - ✓ aborted kernels
  - ✓ poor kernel fill
  - ✓ predisposed to development of stalk rots





#### Management Considerations for Harvesting Drought Stressed Corn

- Development of the crop
  - ✓ if not pollinated, harvest anytime
  - ✓ if pollinated, delay harvest as long as some green leaf tissue remains and not at black layer
- Harvest at proper moisture for the storage structure
  - ✓ if too dry, need to increase packing in structure
  - ✓ Adjust theoretical length of cut: <60%= 1/2"; 60-70%= 3/4"; >70%= 3/4-7/8"
- Nitrate toxicity potential
  - ✓ Need to dilute with grain or legume hay
  - ✓ Raise cutter bar: Nitrates accumulates in bottom 10 to 12" of stalk
  - ✓ Slowly introduce drought-stressed silage during feeding
  - ✓ Watch for silo gases (nitrogen oxide gases)
- If earlier harvest, be sure all pesticides are cleared for silage (i.e. Tilt)





#### Putting a Value on Normal Corn Silage

- Corn silage value = relative feed value of a known market such as corn grain or baled hay
  - $\checkmark$  1/3 to 1/2 value of hay
  - ✓ 7 to 8 X the price of a bushel of corn. If corn silage has already been harvested, then value may be 10 X the price
- Corn silage value = what it would cost to replace or substitute another feed.
  - ✓ Calculated using market prices for energy, protein, and digestibility as measured by NE<sub>L</sub>, crude protein and NDF. Prices of corn, soybean meal, and legume hay can be used.
  - ✓ Calculated using other feed sources such as clover, alfalfa, lespedeza, ryegrass, etc.
- Corn silage value = contracted price agreed upon between grower and buyer that is above the cost of production.





# OLD SLIDES





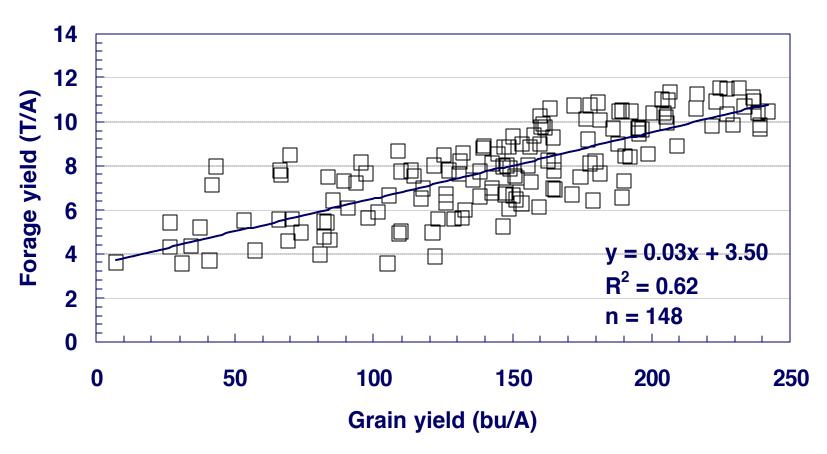
## Relationship Between Kernel Milk Stage and Silage Yield and Quality

| Kernel milk stage | Silage<br>moisture | Drv matter yield | Crude<br>protein | NDF | <i>In vitro</i><br>digestibility |
|-------------------|--------------------|------------------|------------------|-----|----------------------------------|
|                   | %                  | T/A              | %                | %   | %                                |
| Soft dough        | 76                 | 5.4              | 10.3             | 53  | 77                               |
| Early dent        | 73                 | 5.6              | 9.9              | 48  | 79                               |
| 1/2 kernel milk   | 66                 | 6.3              | 9.2              | 45  | 80                               |
| 1/4 kernel milk   | 63                 | 6.4              | 8.9              | 47  | 80                               |
| Black layer       | 60                 | 6.3              | 8.4              | 47  | 79                               |

Wiersma et al., 1993



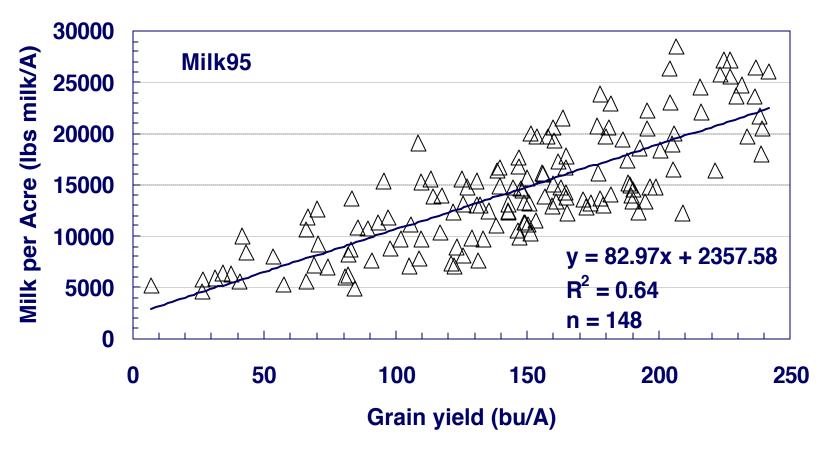



#### **Upgrading Milk2000 from Milk95**

- 1. Develop Milk2000 equation for predicting corn silage energy (Schwab, Shaver and Hoffman)
- 2. Develop starch content (%) NIRS calibration
  - ✓ Run SELECT on global samples (n= 602)
  - ✓ Wet lab chemistry on subset (n= 104)
  - ✓ Develop NIRS equation
- 3. Initial evaluation on calibration samples
- 4. Evaluate 1999 silage trial hybrids
- 5. Evaluate 2000 silage trial hybrids






## Relationship between Forage Yield and Grain Yield for Planting Date Experiments (1997-2000)







## Relationship between Milk per Acre and Grain Yield for Planting Date Experiments (1997-2000)







## Feeding Guidelines – Moldy Corn or Corn Silage (Shaver)

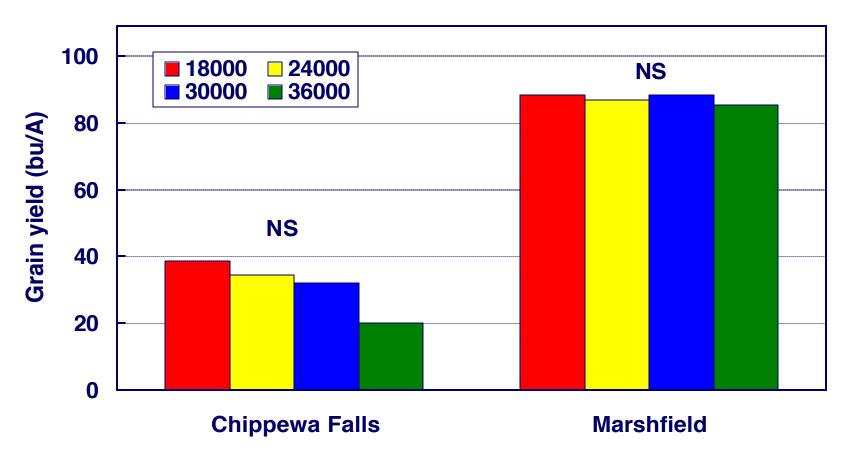
- Test for specific mycotoxins.
- What if high mycotoxin levels found?
  - ✓ Option 1: Do not feed!
  - ✓ Option 2: Target livestock groups?
  - ✓ Option 3: Dilute with "clean corn?
  - ✓ Option 4: Try feeding aluminum silicates?
  - ✓ Option 5: Dilution plus aluminum silicate?
- Feed worst corn in cold weather.
- Watch silo removal rate.
- Watch feed bunk housekeeping.
- Increase frequency of corn feeding.
- Supply adequate vitamins and trace minerals.
- Monitor intake, production, cow condition and fertility





## Harvesting and Handling Non-Uniform Corn Silage Fields

#### Joe Lauer


**UW Corn Agronomist** 

- Predicting silage harvest date the influence of maturity and planting dates
- Special Harvest Situations
  - ✓ Fields with uneven development
  - ✓ Corn silage damaged by autumn frost
  - ✓ Drought damaged corn
- Putting a value on normal and immature corn silage





### Response of corn to plant density during 1988







## Old Relationship Between Corn Grain Yield and Forage Yield at 65% Moisture

| Bu/A         | Bu/T |
|--------------|------|
| Less than 90 | 5.0  |
| 90-110       | 5.5  |
| 110-130      | 6.0  |
| 130-150      | 6.5  |
| Over 150     | 7.0  |

Derived from "Corn silage for Wisconsin cattle - A1178 by Jorgensen and Crowly, 1972





### **Yield and Digestibility of Corn Plant Parts**

| Tissue         | Percent Yield | Digestibility (%) |
|----------------|---------------|-------------------|
| Leaf blades    | 11            | 73                |
| Leaf sheaths   | 4             | 63                |
| Stalk+tassel   | 19            | 60                |
| Cob+husk+shank | 22            | 72                |
| Kernels        | <u>44</u>     | <u>94</u>         |
| Whole plant    | 100           | 71                |

Adapted from Deinum and Struik, 1989





#### More Mileage From Corn Silage

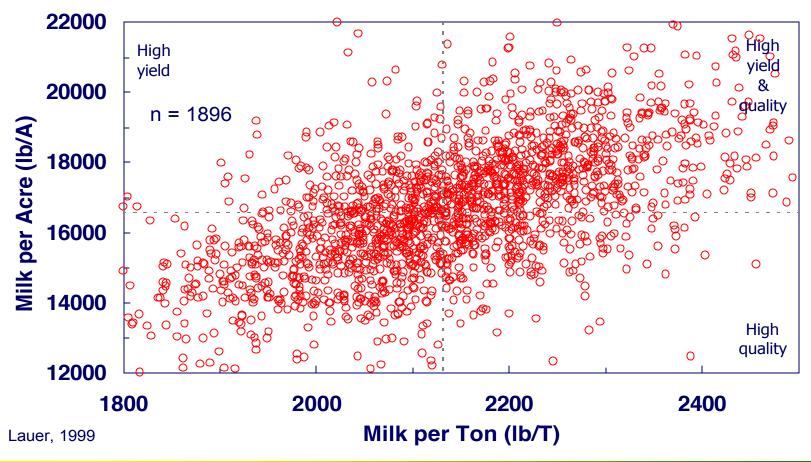
### Joe Lauer Corn Agronomist







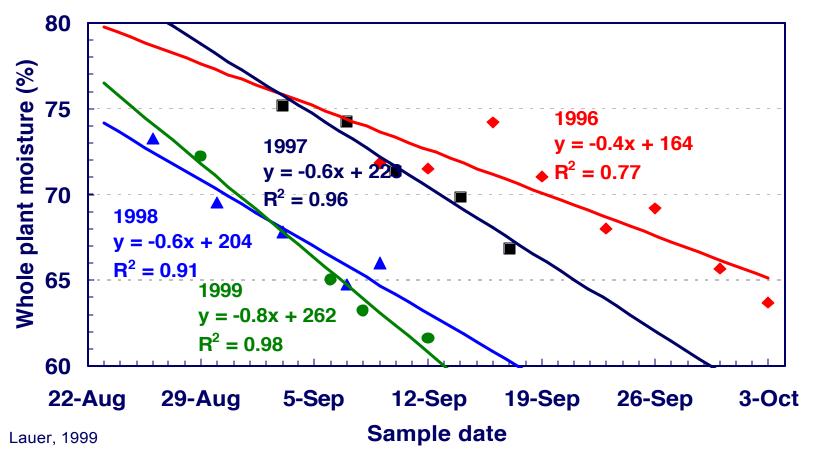
### **UW Corn Agronomy Research Areas** "Where have we been?!"


- Hybrid evaluation
  - √ (Coors, Shaver and Lauer)
- Management for yield AND quality
  - ✓ Population (Cusicanqui)
  - ✓ Planting date (Darby)
  - ✓ Row spacing (Lauer et al.)
  - ✓ Soil fertility (Bundy)

- Harvest
  - ✓ Timing (Darby)
  - ✓ Cutting height (Cusicanqui)
  - ✓ Special situations
    - Frost (Lauer)
    - Hail (Lauer et al.)
    - LDP (Lauer)
- Ensiling
  - ✓ Mycotoxins (Smiley)
  - ✓ Inoculants (Muck)



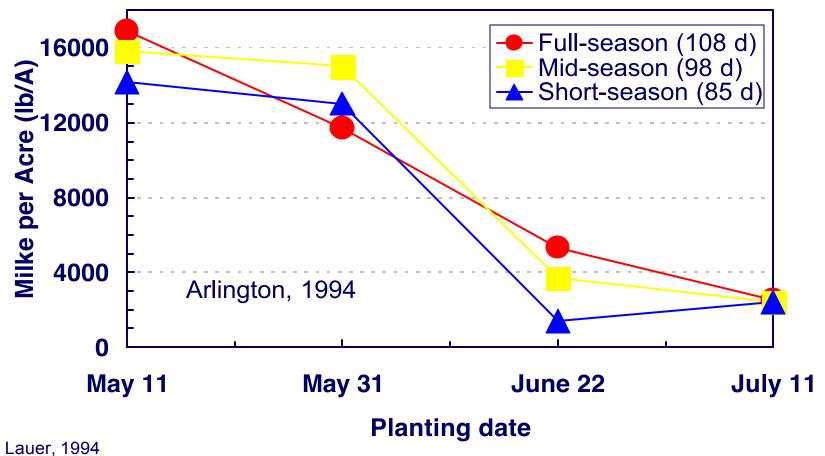



# Corn Hybrid Silage Yield and Quality During 1990-1999 in Wisconsin (Normalized Data)








## Corn silage drydown rate in Manitowoc County, WI.







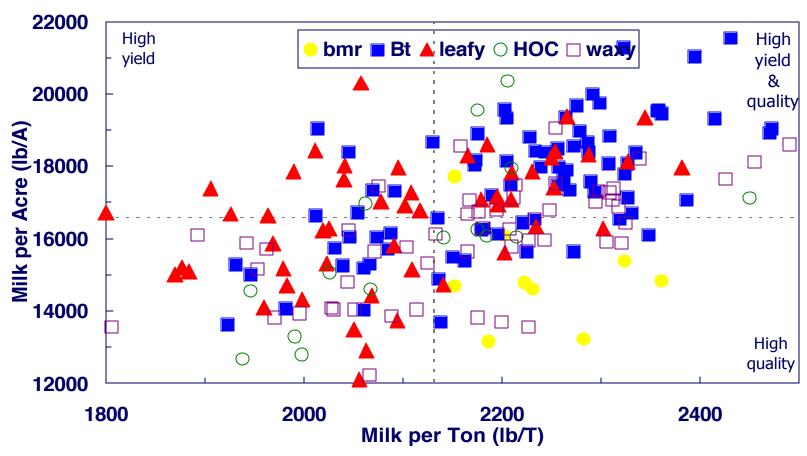
### **Corn Silage Response to Planting Date**







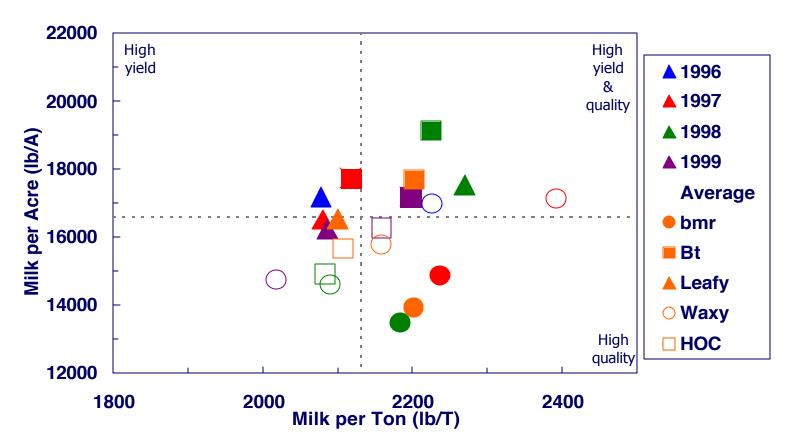
## **UW Corn Agronomy Research Project** "Where are we going?!"


- Hybrid evaluation
  - ✓ Within seed industry, breeding efforts are diverging
  - ✓ What is important for grain hybrids may not be important for silage hybrids
    - starch digestibility
    - "stay-green" synchrony of drydown between ear and stover
    - stover digestibility
- Agronomic management: "Do for silage what you do for grain."
  - ✓ Decision making for changing technologies
  - ✓ Hail
- Value of corn silage





## Corn Hybrid Silage Yield and Quality During 1990-1999 in Wisconsin (Normalized data)


(Normalized data)







## Corn Hybrid Silage Yield and Quality During 1996-1999 in Wisconsin (Normalized data)







### **Corn Silage Compared to Other Forages**

- Advantages
- Palatable forage
- High dry matter yield and energy content
- Consistent quality
- Less labor and machinery (one harvest). Lower cost per ton of dry matter
- Manure management
- Flexibility, dual purpose

- Disadvantages
- Few established markets
- Relatively low in protein
- High transportation costs
- Must be fed on or near farm
- Expensive storage facilities
- Limited production on erodible soils due to conservation requirements





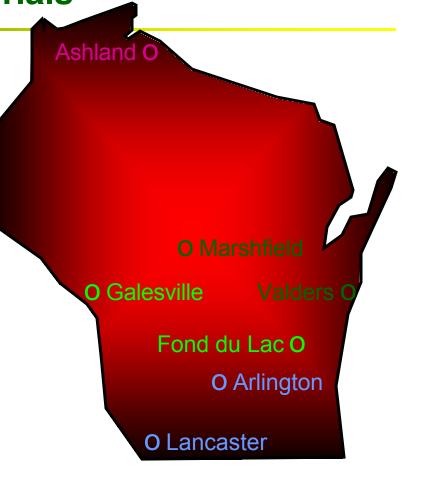
#### **Background**

- Importance of Corn Silage to Wisconsin
  - ✓ Largest acreage and production among U.S. States
  - ✓ Used extensively in forage base for state dairy herds
- Changing Wisconsin dairy production 'climate'
- Wisconsin Corn Silage Consortium (Coors et al.)
  - ✓ Range for NDF and digestibility among commercial hybrids sold in Wisconsin is narrow.
  - ✓ Yield and quality differences among corn hybrids are repeatable.
  - ✓ Corn silage quality can be predicted using NIR.





### Developing a Corn Silage Hybrid Evaluation Program


- Fast, reliable method for predicting silage quality -NIRS.
- Development of equipment designed for harvesting a large number of plots at numerous locations.
- Results must be precise and repeatable.
  - ✓ Necessary for ranking hybrids.
  - ✓ Needed by farmers for making a hybrid selection decision.
- Development of a performance index that can be used to select hybrids.



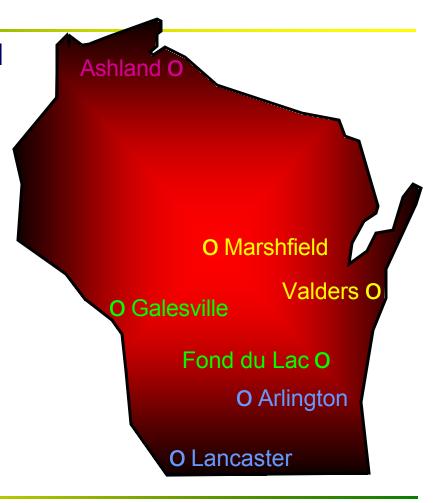


### Wisconsin Corn Hybrid Silage Performance Trials

- Each hybrid is tested at 2 locations in a production zone
- Seed companies are encouraged to enter silage hybrids in at least one grain trial









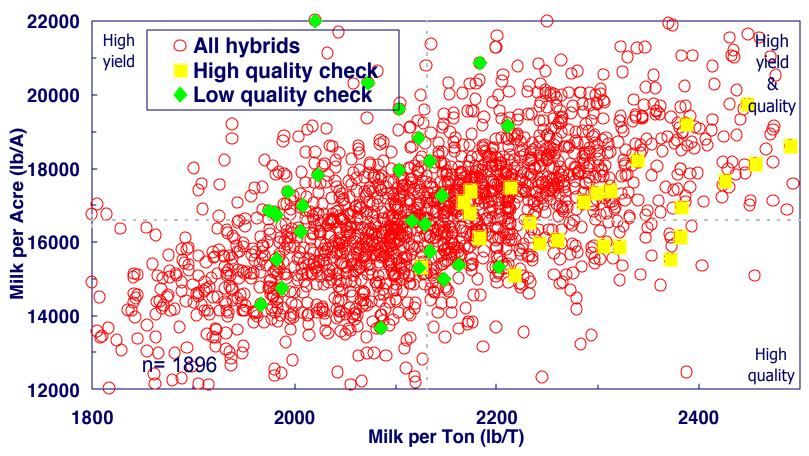



#### Role in UW Corn Silage Program

- Extend research results and methods generated by Coors.
- Administer UW Corn Silage Evaluation Program
- Develop educational materials and programs for farmers, agents and industry.
- Monitor repeatability of hybrid rankings and implications for farm management decisions






### Table 11. Southern Zone - Early Maturity Silage Trial AY RELATIVE MATURITY OR EARLIER, BASED ON COMPANY RATING

|                                 |              | 1998    |        |      |     |            |     |     |     |        |            |            |          |
|---------------------------------|--------------|---------|--------|------|-----|------------|-----|-----|-----|--------|------------|------------|----------|
|                                 |              | AVERAGE |        |      |     |            |     |     |     |        |            |            |          |
|                                 |              |         | Kernel |      |     |            |     |     |     |        | <u>ARL</u> | <u>LAN</u> |          |
|                                 |              | Yield   | Moist  | Milk | СР  | <b>ADF</b> | NDF | IVD | CWD | MILK   | PER        | Yield      | Yield    |
| BRAND                           | HYBRID       | T/A     | %      | %    | %   | %          | %   | %   | %   | TON    | ACRE       | T/A        | T/A      |
| Dairyland                       | Stealth 1406 | 12.0 *  | 53.7   | 10   | 6.6 | 20         | 40  | 79  | 49  | 2350 * | 27100 *    | 12.0       | 12.0 *   |
| Brunner                         | S-5474       | 12.0 *  | 54.7   | 10   | 6.7 | 20         | 41  | 79  | 49  | 2320   | 28200 *    | 13.0       | * 11.0 * |
| <b>Carharts Blue Top</b>        | CX105A       | 10.0    | 58.8   | 20   | 7.0 | 19         | 38  | 80  | 49  | 2490 * | 25900 *    | 11.0       | 9.6 *    |
| Kaltenberg                      | K5109        | 10.0    | 61.3   | 30   | 6.8 | 19         | 40  | 80  | 50  | 2420 * | 24700 *    | 12.0       | * 8.2 *  |
| Cargill                         | 4111         | 9.9     | 61.7   | 20   | 6.9 | 21         | 41  | 78  | 48  | 2230   | 22300      | 11.0       | 8.5 *    |
| Dekalb                          | DK591        | 12.0 *  | 61.8   | 30   | 7.3 | 22         | 43  | 79  | 50  | 2190   | 26500 *    | 13.0       | * 11.0 * |
| 105-DAY HYBRID TRIAL AVERAGE ## |              |         | 61.9   |      |     |            |     |     |     |        |            |            |          |
| Garst                           | 8640         | 10.0    | 62.4   | 10   | 6.8 | 21         | 41  | 79  | 48  | 2300   | 23900      | 12.0       | * 8.5 *  |
| Top Farm                        | TFsx2103     | 9.9     | 64.7   | 20   | 7.0 | 20         | 41  | 79  | 48  | 2300   | 23000      | 11.0       | 8.5 *    |
| Cargill                         | F657         | 8.8     | 65.2   | 40   | 7.1 | 21         | 43  | 81  | 56  | 2330   | 20600      | 9.3        | 8.3 *    |
| Trelay                          | 7004         | 9.2     | 69.5   | 30   | 7.5 | 21         | 42  | 79  | 50  | 2280   | 21100      | 11.0       | 7.5      |
| MEAN                            |              | 10.0    | 61.4   | 20   | 7.0 | 20         | 41  | 79  | 50  | 2320   | 24300      | 12.0       | 9.3      |
| LSD(0.10)**                     |              | 1.6     | 8.0    | 10   | 0.4 | 2          | 2   | 1   | 2   | 150    | 4100       | 1.7        | 3.5      |





# Yield and Quality of High and Low Quality Corn Silage Checks During 1990-1999 in Wisconsin (Normalized data)



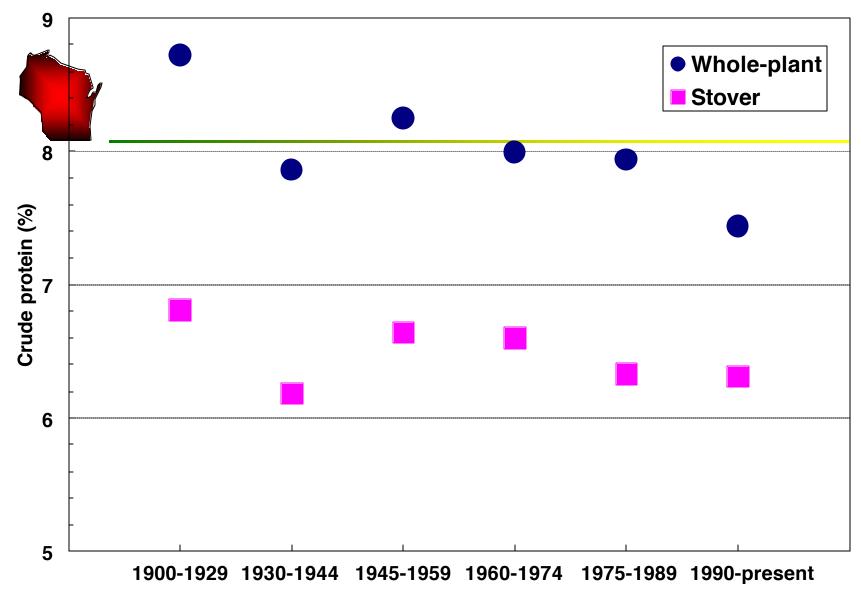




### What Are the "Real World" Differences for Milk Per Acre and Milk Per Ton?

- Values measured in the UW performance trial are "potential" differences and used for hybrid ranking.
  - ✓ Ground sample removes factors like kernel hardness, TLC, harvest timing, mold development, rumen action, etc.
  - ✓ Green forage, not ensiled
  - √ 48 hour digestion period
- "Real world" differences are probably less due to:
  - ✓ Environment and Management --> reduces hybrid differences
  - ✓ Biological system (cow) --> compresses hybrid differences
  - ✓ Economic differences --> difficult to realize on-farm.
  - ✓ Little hybrid feeding data to support estimates and measures of forage quality

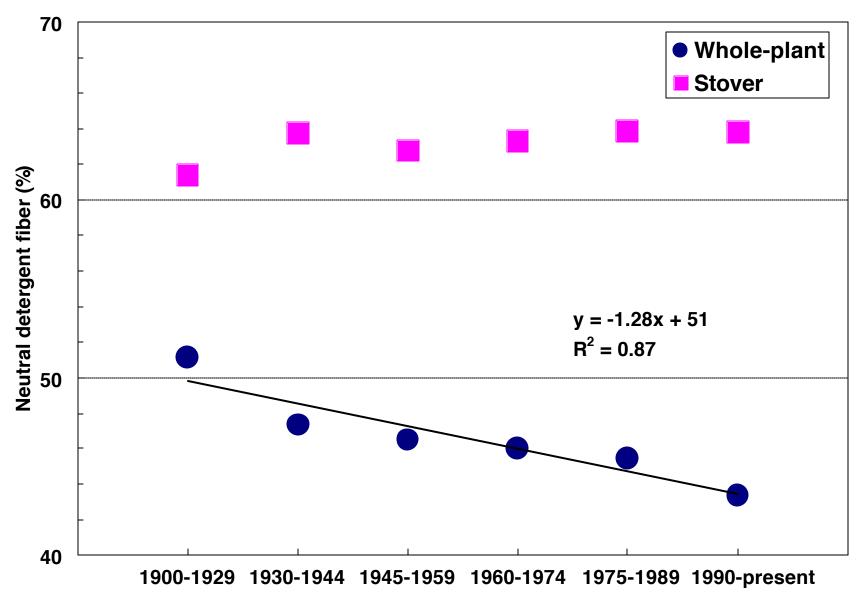




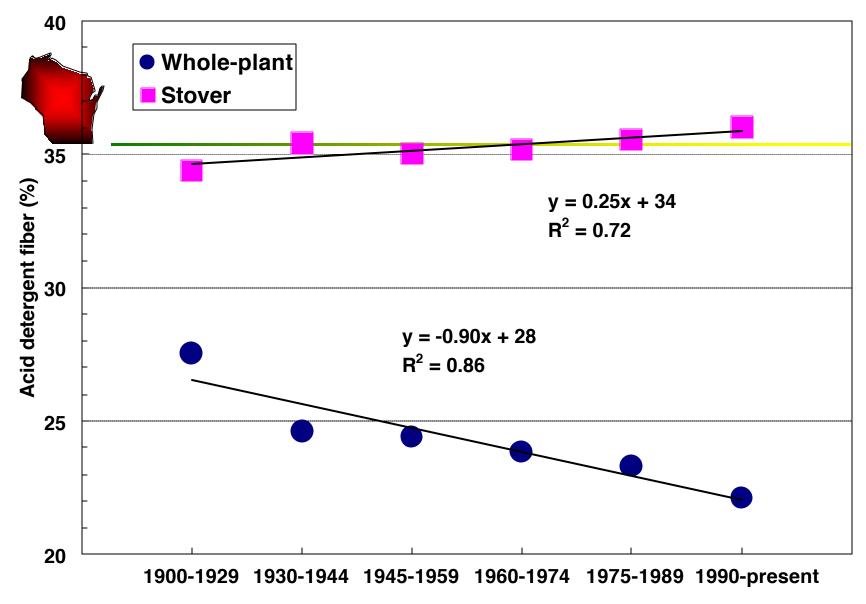

### Why Use Milk Per Acre and Milk Per Ton to Rank Corn Hybrid Performance?

- The objective of feeding forages is to provide energy to animals. How do we estimate energy (quality)?
  - ✓ late 1800's: Proximate analysis -->TDN overestimates energy
  - √ 1960's: Fiber analysis --> ADF and NDF NE

    L
  - √ 1970's: Digestibility, Intake --> RFV Grasses v Legumes
  - √ 1990's: Digestibility, Intake, Yield --> MILK95
  - ✓ Next step: Digestibility kinetics
- Two perspectives
  - ✓ Nutritionist (ration balancing): interested in forage quality
  - ✓ Producer (farm system): interested in both yield and quality
- In most crops, there is a trade-off for yield and quality.
   Difficult to breed for both.

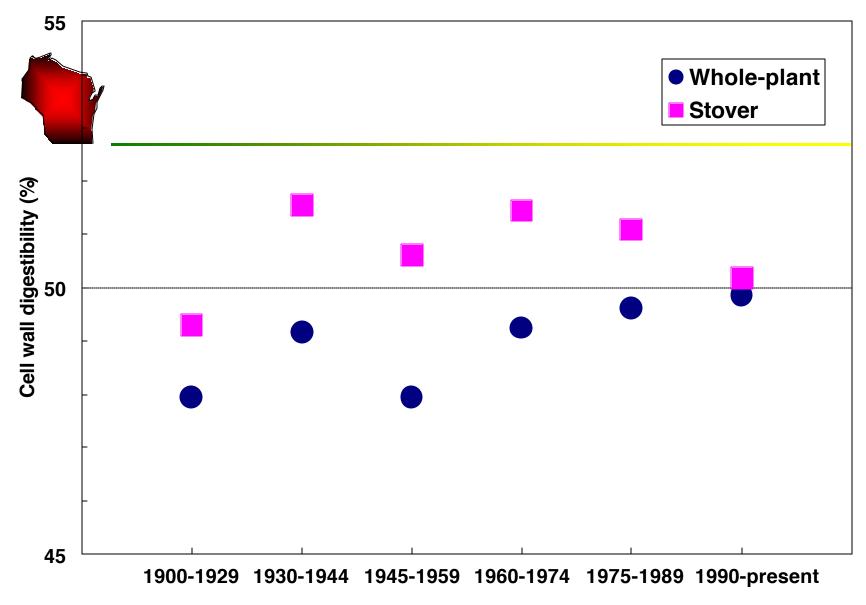






Relationship between corn forage crude protein concentration and era of Lauer, © 1994-2001

\*\*Elease\*\* for whole-plant and stover.

\*\*University of Wisconsin - Agronomy\*\*




Relationship between corn forage neutral detergent fiber concentration and era of release for whole-plant and stover.



Relationship between corn forage acid detergent fiber concentration and stover.

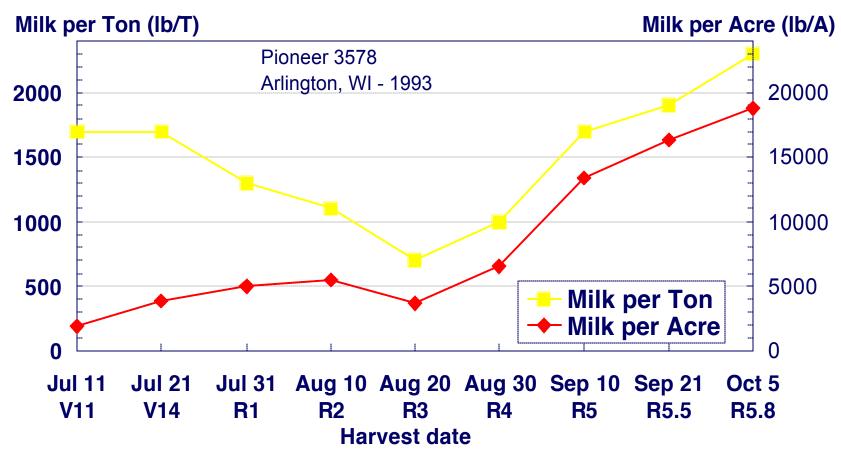
University of Wisconsin - Agronomy



Relationship between corn forage cell wall digestibility and era of release

University of Wisconsin - Agronomy




#### **Summary**

- There is a good relationship between NIRS and wet lab techniques for estimating corn silage CP, ADF NDF and IVD.
- Average range around the trial mean (n = 85) between high and low ranking hybrids is 37% for yield, 26% for Milk per Ton and 45% for Milk per Acre
- Repeatable differences among corn hybrids are observed for silage yield and quality.



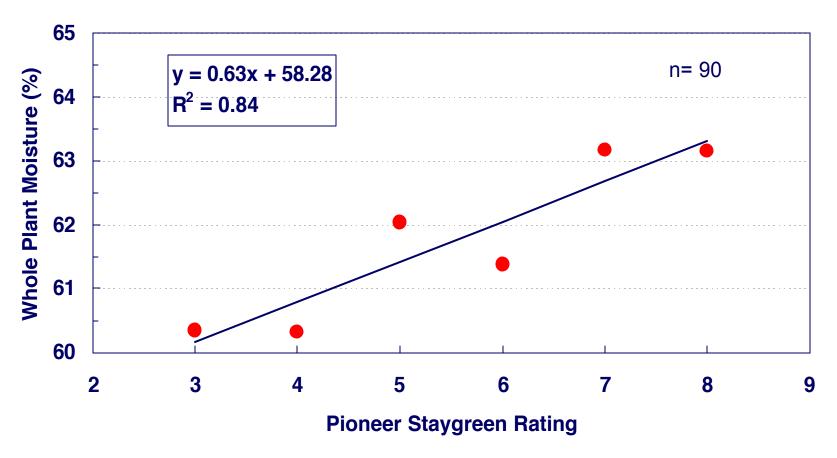


### Corn Silage Yield and Quality Changes During Development








#### **Summary**

- Poor relationship between whole plant silage moisture and kernel milk stage.
- Whole plant moistures vary from 50 to 74% at 1/2 kernel milk stage.
- No obvious relationship for year, location or hybrid.
  - ✓ Of 56 hybrids with five or more testing environments, only 10 (18%) of the hybrids had R² > 0.75.
- Use kernel milk stage as a "trigger" to start checking moisture. Once moisture is known, use 0.5% drydown rate as average during September. Retest prior to chopping.





## Whole Plant Moisture v. Pioneer Staygreen Rating of Pioneer Hybrids Tested UW Trials (Normalized Data)







## 1999 Wisconsin Corn Performance Trials Silage Summary

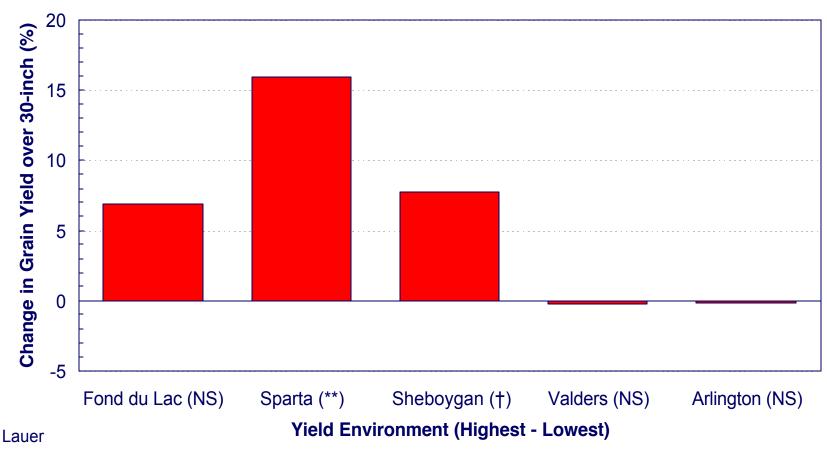
10.1

8.9

9.8

8.1

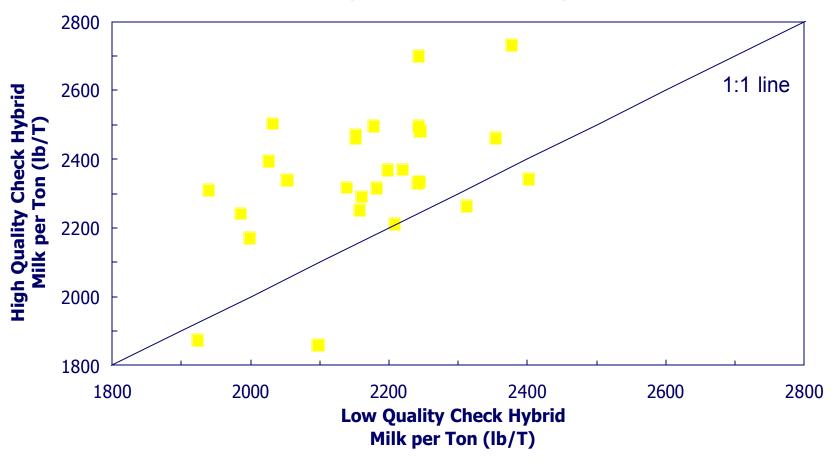
7.5


8.0

8.0






#### Corn Silage Yield Response to Row Spacing in Wisconsin (1997-1999)







## Rank Repeatability of High and Low Quality Corn Silage Check Hybrids in Wisconsin (1995 to 1997)



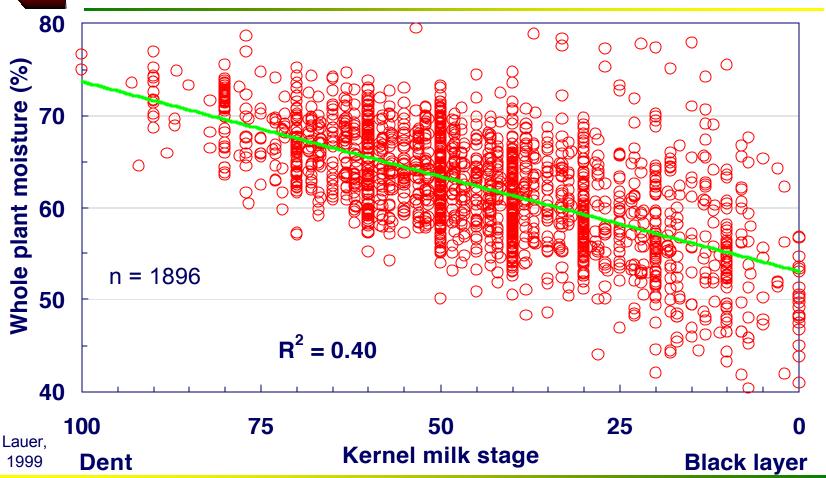




#### Using Wisconsin Corn Hybrid Performance Trial Results

- Use <u>multi-environment average</u> data
  - ✓ Begin with trials in zone(s) nearest you
  - ✓ Compare hybrids with similar maturities
  - ✓ Use many years and locations
- Evaluate <u>consistency</u> of performance
  - ✓ Check performance in other zones and locations
  - ✓ Check other reliable unbiased trials
  - ✓ Be wary of inconsistent performance.
- SELECT at http://corn.agronomy.wisc.edu
- You are taking a tremendous gamble if basing your hybrid selection decisions on 1 or 2 local test plots






### 1999





#### Relationship between forage moisture and kernel milk stage (1990 - 1999)







## Top 10 Corn Hybrid Silage Yields in Southern Production Zones of Wisconsin during 1999





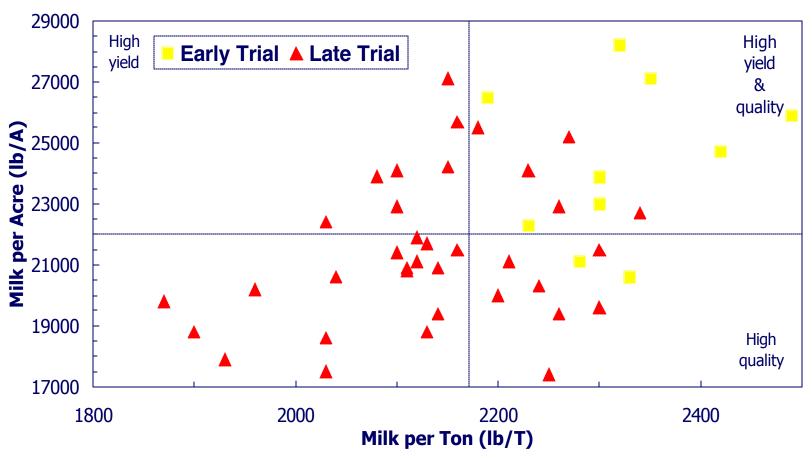
## Top 10 Corn Hybrid Silage Yields in Northern Production Zones of Wisconsin during 1999





## All Time Top 10 Corn Hybrid Silage Yield Performances at a Wisconsin location (1990 to 1999)

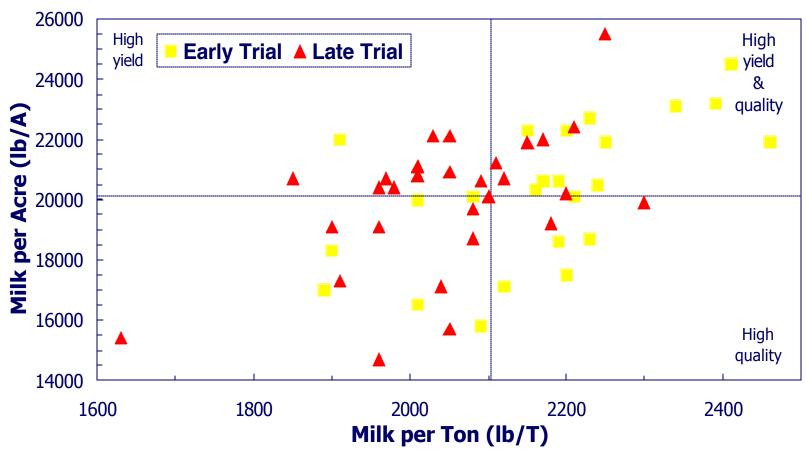





### 1998



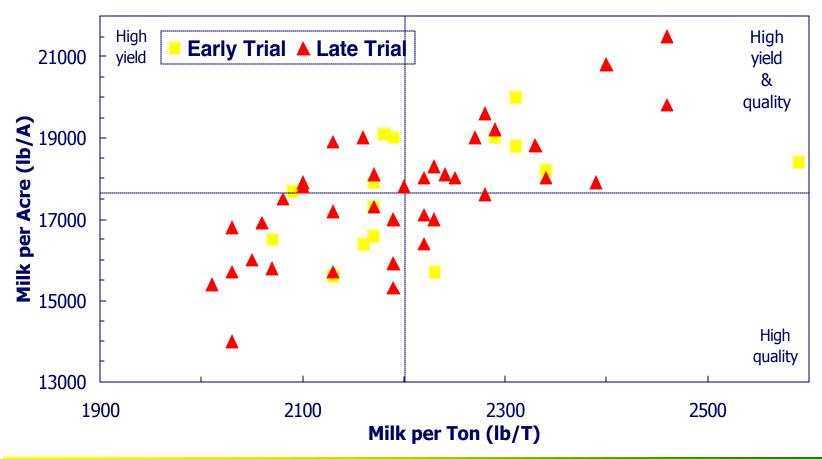



## Corn Hybrid Silage Performance in the Southern Production Zone of Wisconsin During 1998



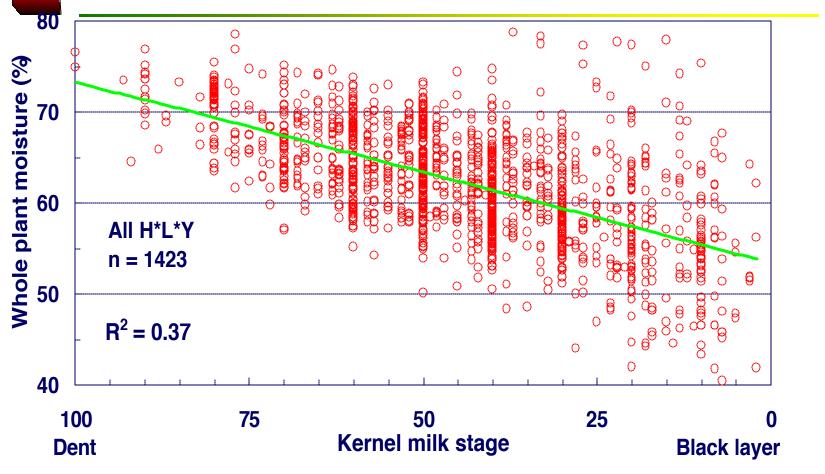





## Corn Hybrid Silage Performance in the South Central Production Zone of Wisconsin During 1998



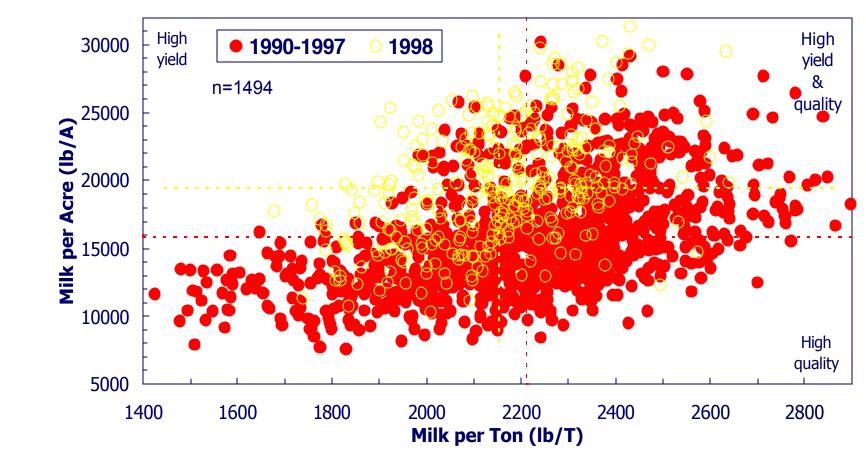





## Corn Hybrid Silage Performance in the North Central Production Zone of Wisconsin During 1998



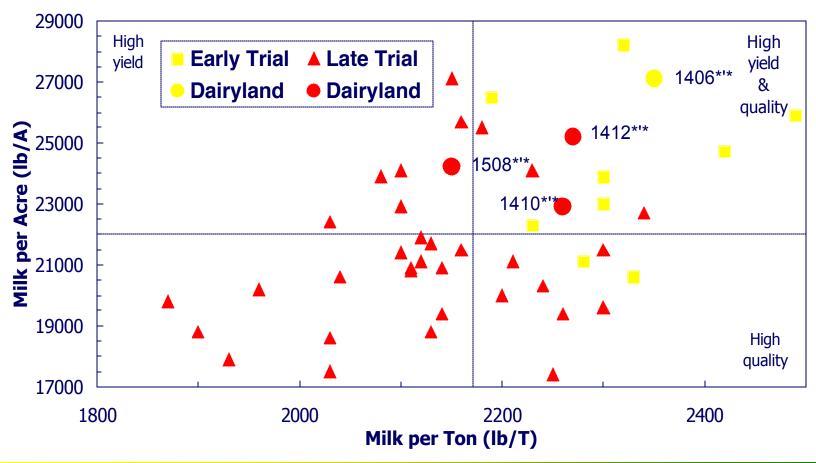



### Relationship between whole plant moisture and kernel milk stage (1990 - 1998)





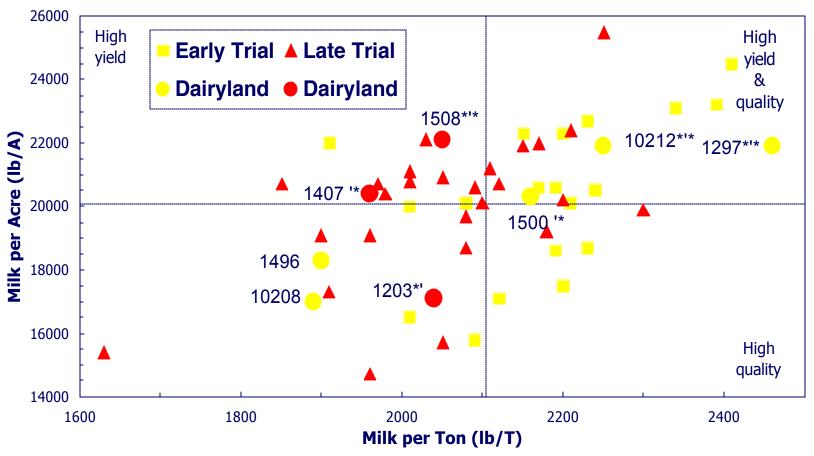



## Corn Hybrid Silage Yield and Quality During 1998 Compared to 1990-1997 in Wisconsin





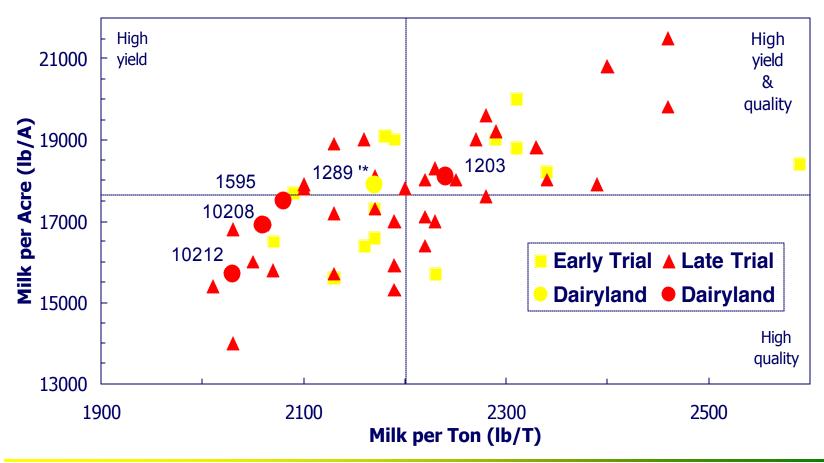



## Corn Hybrid Silage Performance in the Southern Production Zone of Wisconsin During 1998








## Corn Hybrid Silage Performance in the South Central Production Zone of Wisconsin During 1998







## Corn Hybrid Silage Performance in the North Central Production Zone of Wisconsin During 1998



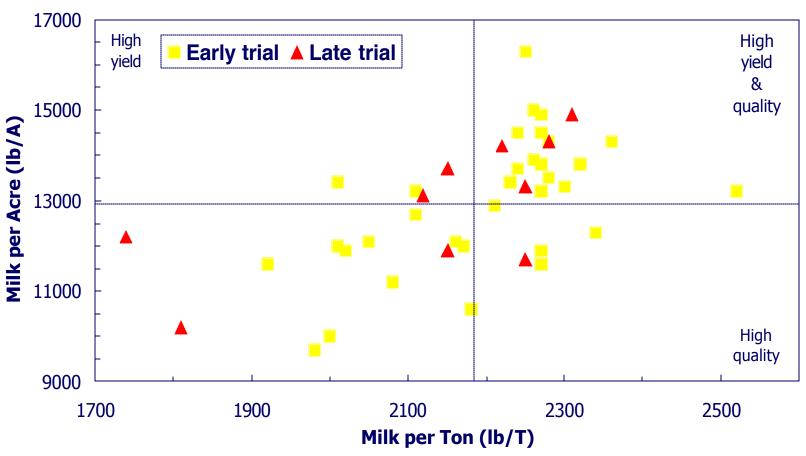




## 1997



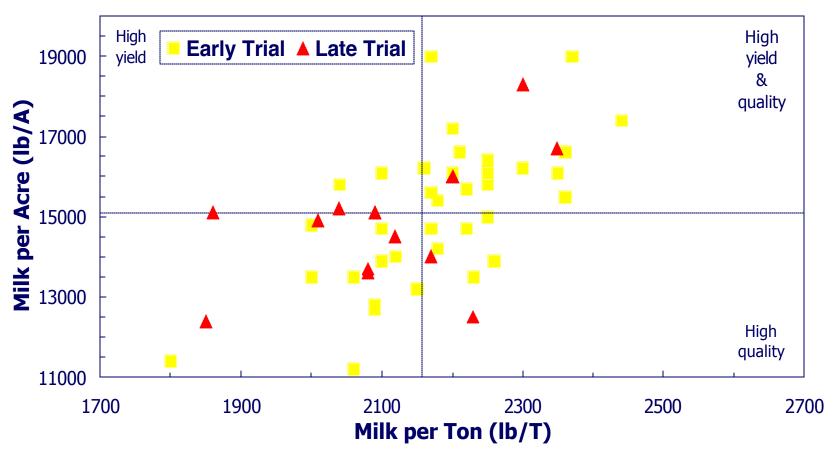
#### TABLE 14. SOUTH CENTRAL ZONE - SILAGE LATE MATURITY TRIAL


|   | AVERAGE |       |        |     |     |     |     |     |        |         |
|---|---------|-------|--------|-----|-----|-----|-----|-----|--------|---------|
| 4 |         | ı     | Kernel |     |     |     |     |     |        |         |
| ı | Yield   | Moist | Milk   | СР  | ADF | NDF | IVD | CWD | MILK   | PER     |
|   | T/A     | %     | %      | %   | %   | %   | %   | %   | TON    | ACRE    |
|   | 7.0     | 66.6  | 60     | 7.4 | 21  | 41  | 80  | 52  | 2350 * | 16700 * |
|   | 6.6     | 67.3  | 60     | 7.4 | 23  | 46  | 79  | 55  | 2080   | 13600   |
| ı | 6.6     | 68.1  | 60     | 7.3 | 22  | 45  | 80  | 56  | 2170 * | 14000   |
|   | 7.3 *   | 68.4  | 60     | 7.2 | 22  | 44  | 80  | 54  | 2200 * | 16000 * |
| ı | 7.2 *   | 68.9  | 60     | 7.6 | 23  | 46  | 79  | 54  | 2090   | 15100   |
|   |         |       |        |     |     |     |     |     |        |         |
|   | 7.5 *   | 69.4  | 70     | 7.1 | 24  | 47  | 79  | 55  | 2040   | 15200   |
|   | 6.5     | 69.5  | 70     | 7.4 | 23  | 46  | 79  | 53  | 2080   | 13700   |
| ı | 8.0 *   | 69.7  | 60     | 7.1 | 22  | 43  | 81  | 55  | 2300 * | 18300 * |
|   | 6.7     | 70.1  | 80     | 7.2 | 23  | 45  | 79  | 52  | 2120   | 14500   |
| ı | 8.1 *   | 70.1  | 80     | 7.3 | 26  | 49  | 78  | 55  | 1860   | 15100   |
|   |         |       |        |     |     |     |     |     |        |         |
|   | 7.3 *   | 71.2  | 80     | 7.2 | 24  | 46  | 78  | 53  | 2010   | 14900   |
|   | 7.2 *   | 71.4  | 70     | 7.9 | 24  | 45  | 79  | 53  | 2090   | 15100   |
| ı | 6.6     | 73.8  | 80     | 8.2 | 25  | 48  | 77  | 53  | 1850   | 12400   |
|   | 5.5     | 75.6  | 70     | 7.7 | 24  | 47  | 82  | 63  | 2230 * | 12500   |
|   | 7.0     | 70.0  | 70     | 7.4 | 23  | 46  | 79  | 54  | 2100   | 14800   |
|   | 1.0     | 2.2   | 10     | 0.3 | 2   | 3   | 2   | 2   | 210    | 2400    |



ND DU LA

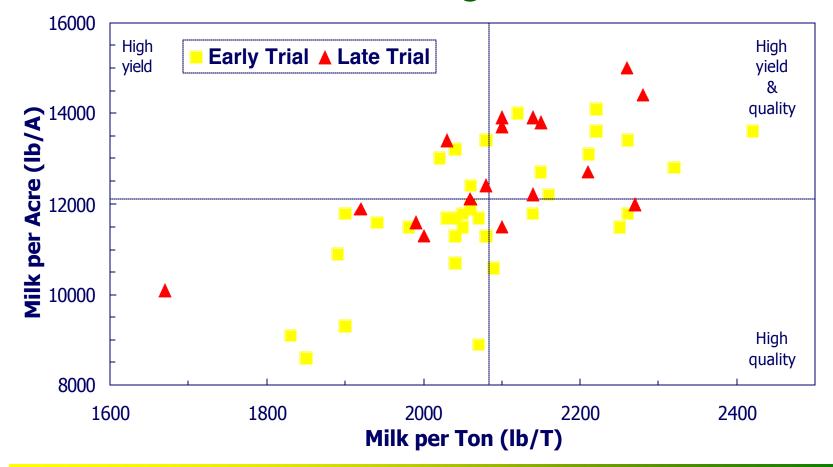



## Corn hybrid silage performance in the southern production zone of Wisconsin during 1997








## Corn hybrid silage performance in the south central production zone of Wisconsin during 1997







## Corn hybrid silage performance in the north central production zone of Wisconsin during 1997







### COORS





## Repeatability of Whole Plant and Stover Silage Quality Traits (derived from Coors et al., 1995)





#### **Conclusions from UW Corn Silage Research Consortium (Coors et al., 1995)**

- Ranking among corn hybrids for silage yield and quality is repeatable.
- Range among commercial WI hybrids for silage NDF and digestibility is narrow.
- Highest grain yielding hybrids are not necessarily the highest silage yielding hybrids.
- High grain-to-stover ratios do not necessarily improve silage quality, but are desired to insure adequate fermentation and preservation





## BMR





#### **History of Brown Midrib Corn**

- First discovered in dent corn at St. Paul, MN in 1924
  - ✓ bm1 (Jorgenson, 1931)
  - ✓ bm2 (Burnham and Brink, 1932)
  - √ bm3 (Emerson et al., 1935)
  - √ bm4 (Burnham, 1947)
- Corn plants exhibit a reddish-brown pigmentation of the leaf midrib at V4 to V6. Also seen in rind and pith.
   Coloring eventually disappears on leaves, but remains in the stalk.
- Also found in sorghum, sudangrass, and pearl millet.



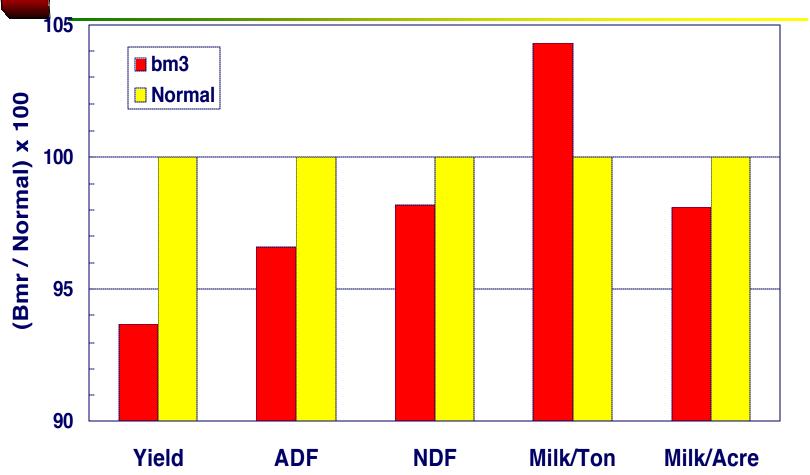


#### **History of Brown Midrib Corn**

- About 40 years after their discovery, the bmr mutations were found to have a drastic effect on lignin (Lechtenberg et al., 1972) and that digestibility was improved in ruminants:
  - ✓ sheep: Muller et al., 1972
  - ✓ goats: Gallais et al., 1980
  - ✓ heifer cattle: Colenbrander et al., 1972, 1973, 1975
  - ✓ beef cattle: Keith, 1981
  - ✓ dairy cows: Frenchick et al., 1976






#### **History of Brown Midrib Corn**

- In the U.S. results of feeding bmr corn are either inconclusive or trended slightly in favor. A significant increase in milk production was observed only once (Keith et al., 1979).
  - ✓ Increased body weight noted every time bmr was fed.
  - ✓ Energy intake was not limiting in these studies and it seems that extra nutrients digested in bmr corn are partitioned into meat or fat body tissues rather than milk.
- Feeding results from England (Weller and Phipps, 1986) and France (Hoden et al., 1985) indicate increased milk production.





#### Relative comparison of bm3 to normal corn







#### **Brown Midrib compared to Dent Corn**

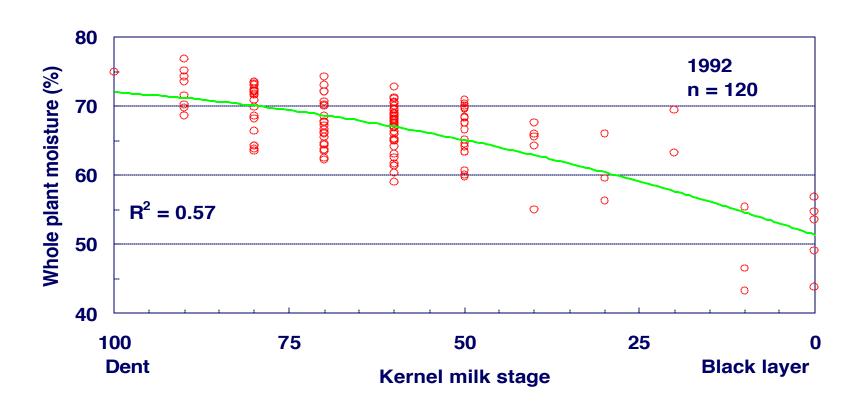
- Advantages
  - ✓ Increased silage intake
  - ✓ Increased digestibility of stover

- Disadvantages
  - ✓ Lower yields
    - Whole plant silage
    - Grain
  - ✓ Susceptibility to lodging
  - ✓ Poor early season vigor
  - ✓ Delayed flowering
  - ✓ Slower early season growth rates



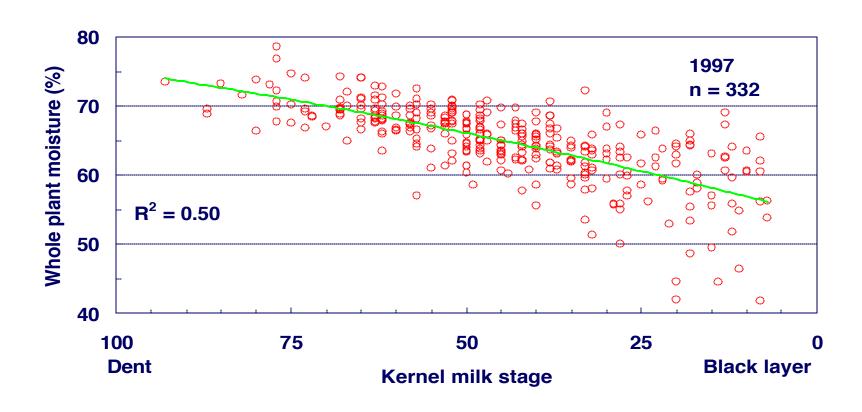


## Relationship between kernel milk stage and silage yield and quality (derived from Wiersma et al., 1993)



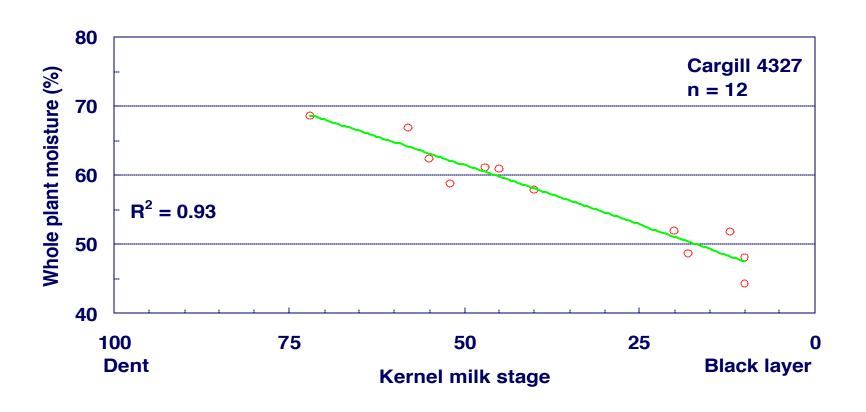



# Moisture Milkline



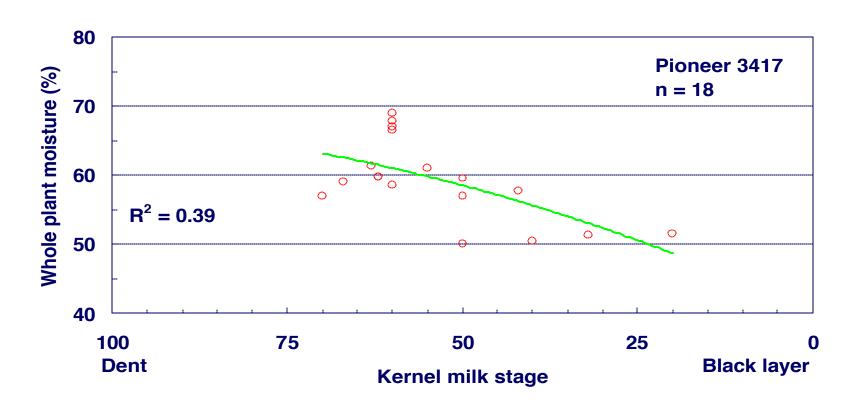










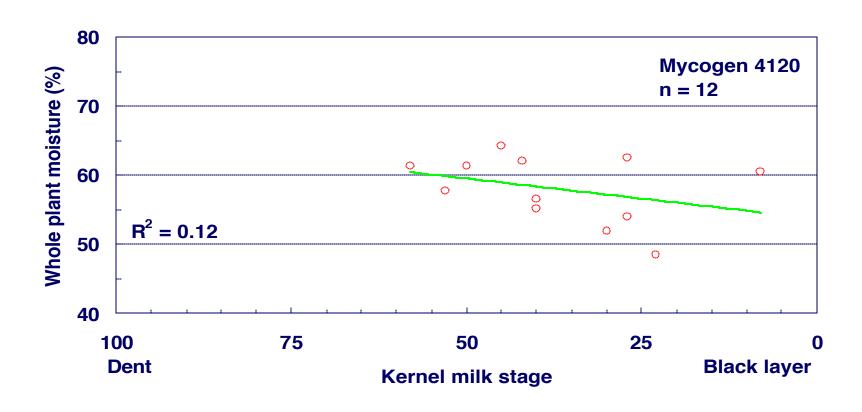








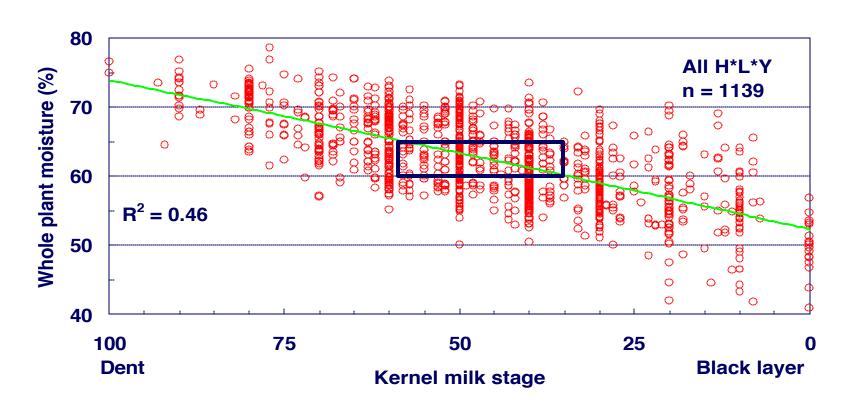














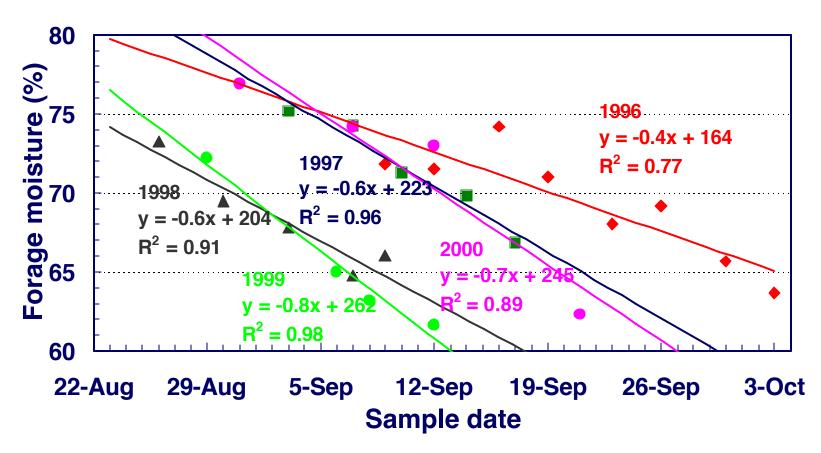



#### Relationship between whole plant moisture and kernel milk stage (1990 - 1997)





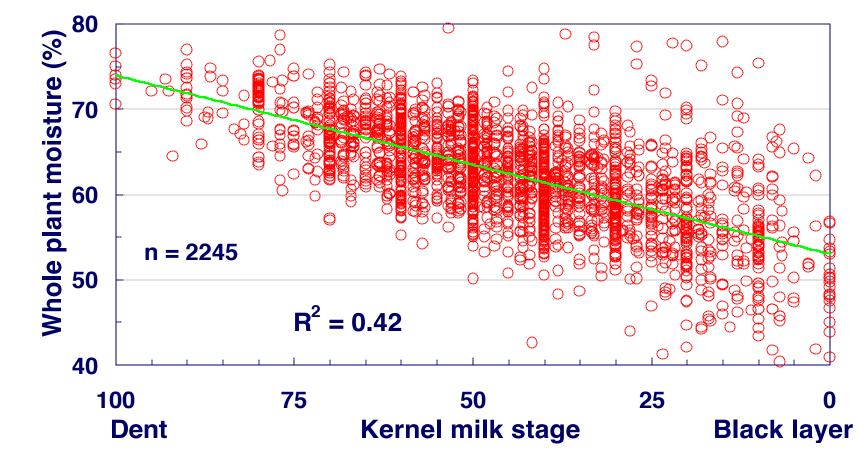



## ERA








#### Corn Silage Drydown Rate in Manitowoc County, WI.







#### Relationship Between Forage Moisture and Kernel Milk Stage (1990 - 2000)



