After TMDL Approval: The Next Steps in the Lower Fox River Watershed

Keith Marquardt
Water Resource Management Specialist, WDNR

Wisconsin Crop Management Conference Jan 16, 2013

Total Maximum Daily Load

Watershed approach

TMDL = WLA + LA + MOS

for a particular pollutant examples: pathogens, nutrients, etc.)

How did we get to TMDLs?

- Clean Water Act of 1972- Federal Law
 - Amended in 1977
 - Established 303(d) and TMDL in law
- Reliance on NPDES process with little early use of TMDL process
- Legal challenges in 80s 90s because of the nonuse of TMDLs
- > EPA ramps up 303(d) + TMDL processes in 2000

That is an 303(d) or Impaired Water?

Waters that do not meet designated uses

Waters that do not meet water quality

criteria

Water Quality Standards

Designated Uses:

- Fish & Aquatic Life
- Public Health
- Recreation

Water Quality Criteria:

- Numeric: dissolved oxygen, pH, bacteria, toxic substances, phosphorus, etc.
- Narrative: "no objectionable deposits," "substances in concentrations or combinations shall not be harmful to humans, fish, plants, or other aquatic life."

Phosphorus Criteria NR 102.06

```
Rivers _{NR \, 102.06(3)(a)} = 100 \, \mu g/L
Streams = 75 \mu g/L
```

• All unidirectional flowing waters not in NR 102.06(3)(a)

Reservoirs

- Stratified = 30 μg/L
- Not Stratified = $40 \mu g/L$
- Lakes range from 15-30 μg/L
- Lake Michigan =7 μg/L
- Lake Superior = $5 \mu g/L$

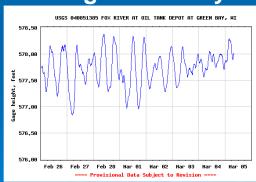
Exclusions

- Ephemeral Streams
- Wetlands
- Lakes <5 ac

What are TMDLs?

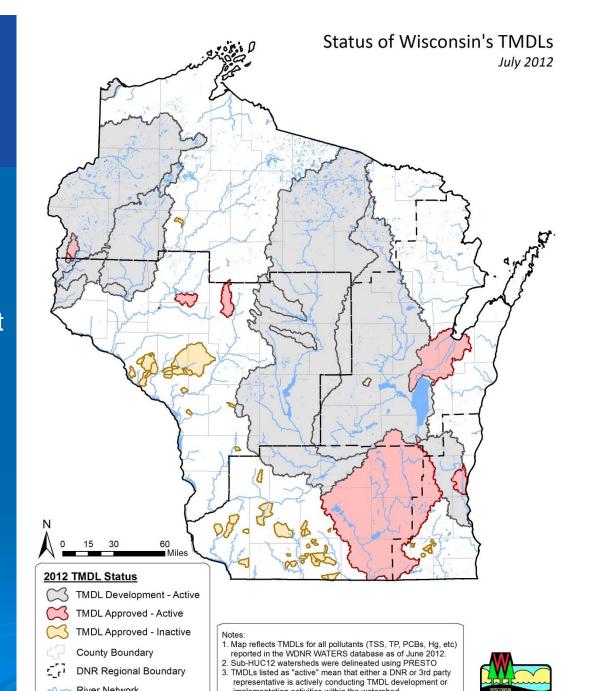
The amount of a pollutant a waterbody can receive and still meet water quality standards

tal Maximum Daily Load =


Load Allocation

Waste Load Allocation

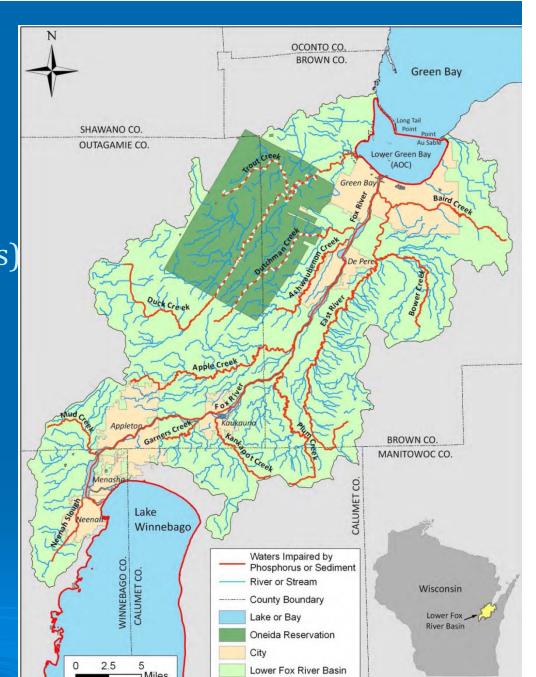
Margin of Safety


012 TMDL Status

ultiple TMDLs approved 2012.

MDLs under development Milwaukee and sconsin Basins.

per Fox River TMDL nned.


ercury TMDL....

er Fox River Basin

inn to GB sq mi niles (17 locks, 12 dams) ounties & ida Nation vatersheds mpaired waters tretches impaired mdls nd TSS

e Winnebago

Phosphorus

Nonmetal, +15 DNA, RNA, cell Uses: fertilizers

Supplies? Calcium phosphate in rock-----

----fertilizer

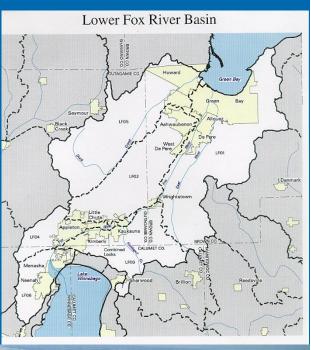
Effects: blue green algae = some toxic

'SS – Total Suspended Solids

Number 1 pollutant to Wisconsin waters

Effects: irritant, covers nooks in substrate, fills in streams, warms water, depletes oxygen, carries pollutants with it

Sources:



Lower Fox River Basin

WTF
Municipal (14)
Industrial (20)
S4s (29)
AFOs (15)
P (##)
rban non-regulated ackground

forest

other

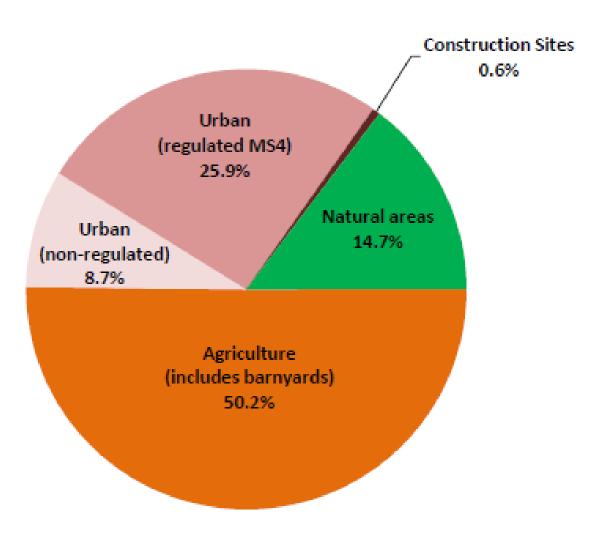
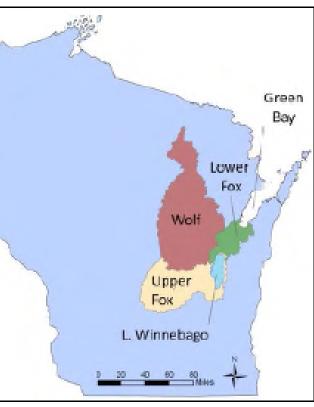



Figure 4. Summary of land use in Lower Fox River Basin

Land Use

7. Drainage basins for the Upper Fox , Lower Fox River, and Wolf River

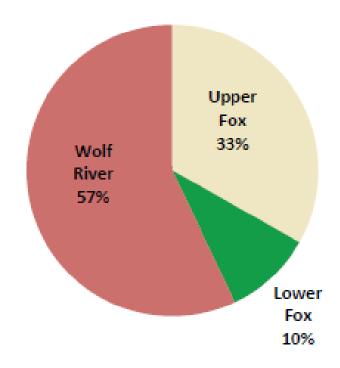


Figure 18. Percent of total land area of the Fox-Wolf Basin

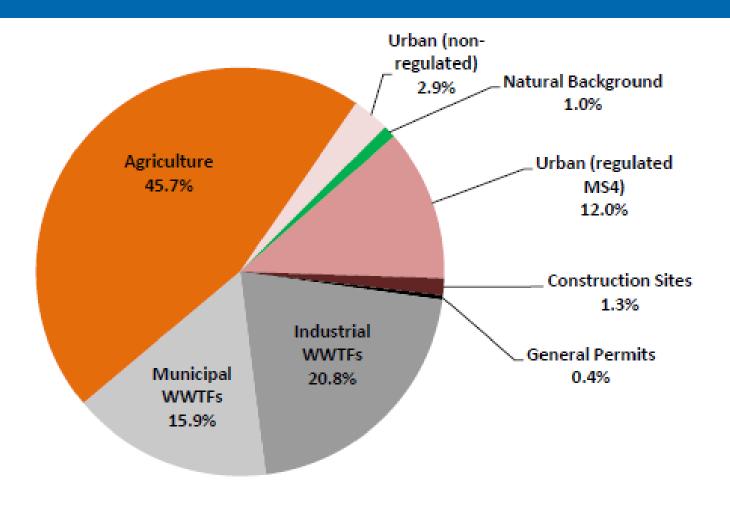
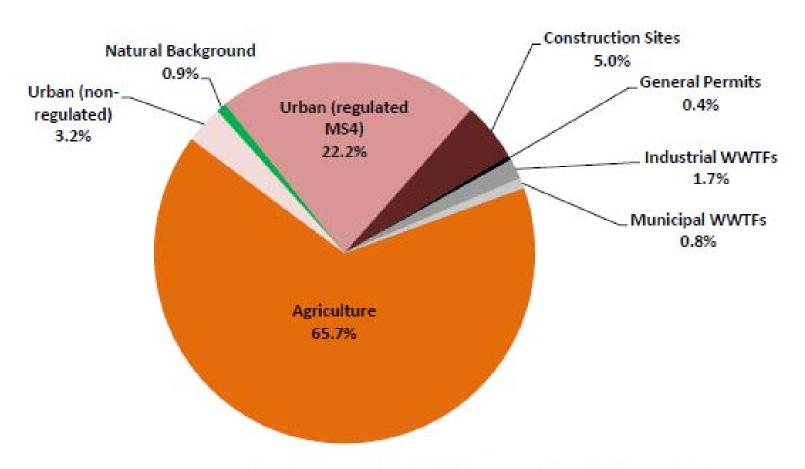



Figure 19. Sources of baseline TP loading in the LFR Basin

Total Phosphorus

gure 20. Sources of baseline TSS loading in the LFR Basin (excluding biotic solids)

Total Suspended Solids

IMPLEMENTATION

of Fox River Basin TMDL

WTFs (Industrial & Municipal)

lechanism: write new effluent limit into their permit

Options:

Optimization

Construction

Water Quality Trading

Adaptive Management

1S4s — Municipal Separate Storm Sewer System.....aka urban runoff

chanism: write tmdl limit into their permit, as a % reduction

ons:

construction of stormwater BMPs

Vater Quality Trading daptive Management

CAFOS – confined animal feeding operations... large farms

echanism: CAFO permit

ptions:

BMPs

Water Quality Trading
Adaptive Management

Ps – General Permits

onmetallic mining, non-contact cooling water, ormwater management, concrete, etc.......

chanism: could write into their permit, as a % reduction in tmdl areas????

er (WLA)

nregulated Urban

ackground (forest, wetlands..)

n-Point Sources (LA)

Agriculture

gulations: NR151 Etc.....

tions:

BMPs - structural and nonstructural

elivery: existing "infrastructure" –

TCP, LCDs, consultants, FSA, NRCS,

IR

Agriculture

Cropland

Meet "T" (& pastures)

Tillage Setback

 \supset

VMP

Livestock-Barnyard

- Manure storage
- Process wastewater
- Diversions in WQMA
- Manure Management Prohibitions

n-Point Sources (LA)

Agriculture

Tools - Resources

Consultants

County LWCDs

DATCP

IRCS

SA

lon-government

DNR - CAFOs, TRM, NOD

n-Point Sources (LA)

Agriculture Potential Issues

Prain Tile

Clay soils

PI.... SWAT model

IMP

Agriculture Additional

Orainage Districts

DATCP: working lands initiative (FPP);

ivestock Siting

ocal Ordinances

Cost sharing

"NEW" OPTIONS

Water Quality Trading

Adaptive Management

NOPTIONS

Water Quality Trading

Vater quality trading is an exchange of pollutant reduction credits.

A buyer with a high pollutant control cost can purchase pollutant eduction or treatment from a willing seller.

rading can produce substantial cost savings but must result in an approvement in water quality and a net reduction of the pollutant being traded.

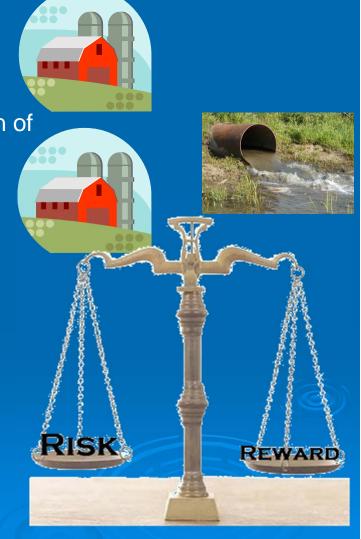
rading also can provide ancillary environmental benefits such as lood retention, riparian improvement and habitat.

Chapter 283.84

Point Source driven

N OPTIONS Water Quality Trading

th 283.84 ollutant parameters.... P, N, etc. oluntary Compliance option ocused on achieving permit compliance Illows point sources to work with nonpoint ources to reduce overall phosphorus loads so nat water quality criteria can be attained (point ource permit holder; funds) - upstream could be potential for larger scale rade ratios


Trade Ratios

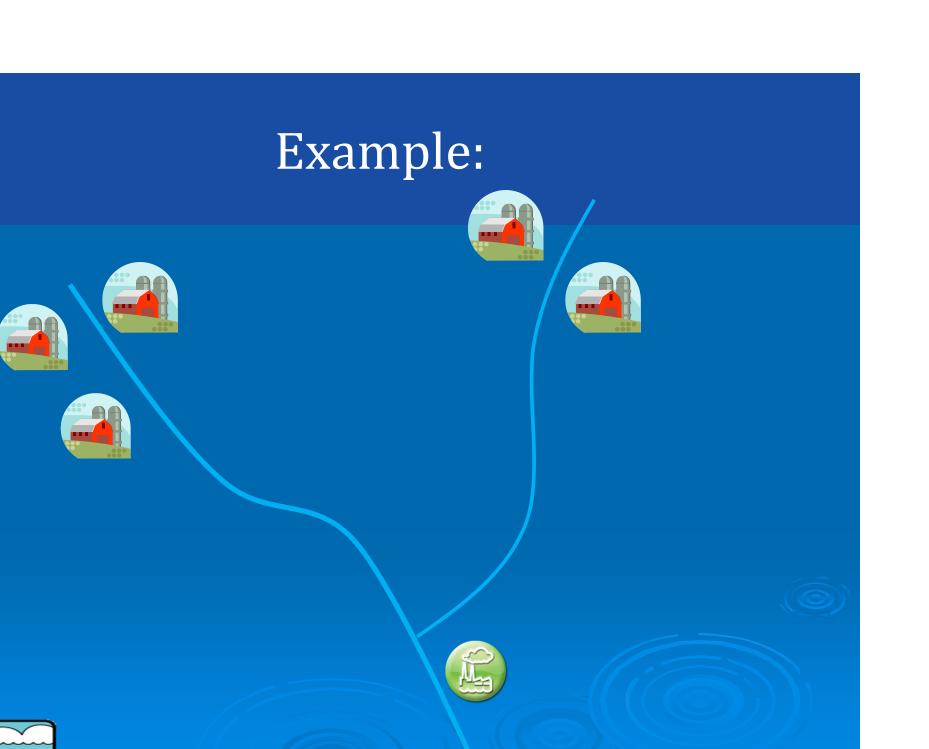
ertainty


Based on effectiveness and ease of verification of the management practices employed.

very (distance between generator and user)
TMDL – Same factors used in TMDL
Non-TMDL – USGS SPARROW model for P,
N and sediment

ivalency (form of pollutant)
Not necessary with phosphorus
Not yet specified for N and TSS (sediment)

Trade Administration



Agreements

W OPTIONS

Adaptive Management

IR 217.18 WAC only oluntary Compliance option (not all point sources ligible) ocused on water quality improvements in vatershed - - have to perform in stream monitoring llows point sources to work with nonpoint sources reduce overall phosphorus loads so that water uality criteria can be attained (point source funds)

N OPTIONS Adaptive Management

reloping AM Plan Step 1: Identify partners

Step 2: Describe the watershed and set load reduction goals

Step 3: Conduct a watershed inventory

Step 4: Identify where reductions will occur

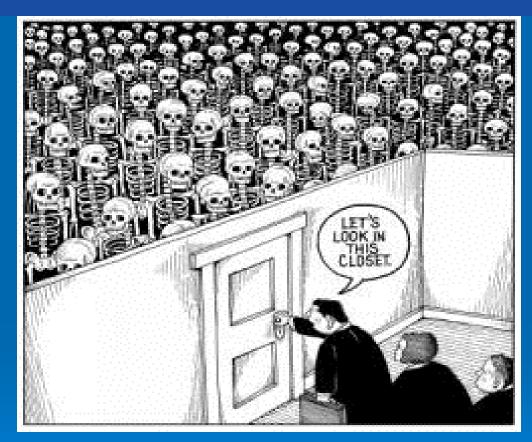
Step 5: Describe management measures

Step 6: Estimate load reductions expected by permit term

Step 7: Measuring success - monitoring

Step 8: Financial security

Step 9: Implementation schedule with


milestones

217.18(2)(d)

Differences between AM & Trading

	Adaptive Management	Trading
Ilutants Covered	TP (and possibly TSS)	All pollutants except BCCs
id Goals	Attaining the water quality criteria	Offsetting the limit
plementation Area	Watershed-focused	Upstream-focused
fsets	No trade ratios	Trade ratios apply
ming	Implemented throughout the permit term	Generating credits before they can be used
Stream Monitoring	Required	Not required
vel of cumentation Needed	General watershed information	Field-by-field documentation

What is a TMDL?

A TMDL reveals the skeleton in the closet"

Dean Maraldo, EPA

Contact Information

th Marquardt

NR

E. County Road Y, Suite 700 hkosh, WI 54901

one 920/303-5435

th.Marquardt@Wisconsin.gov

QUESTIONS?

Or visit http://dnr.wi.gov search "phosphorus rule"