Influence of K Deficiency on Soybean Aphid Populations in Wisconsin

Scott Myers and Claudio Gratton
Department of Entomology
University of Wisconsin-Madison

Background

Soybean Aphids first discovered in Wisconsin in 2000.

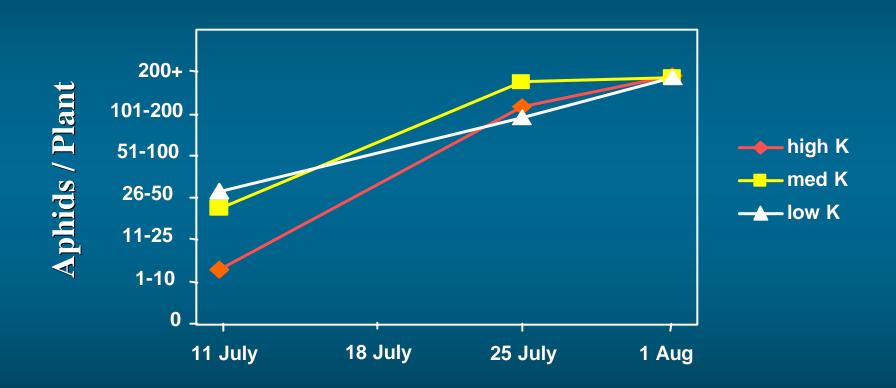
Production fields showed large numbers of aphids in areas showing symptoms associated with low potassium availability

Objective

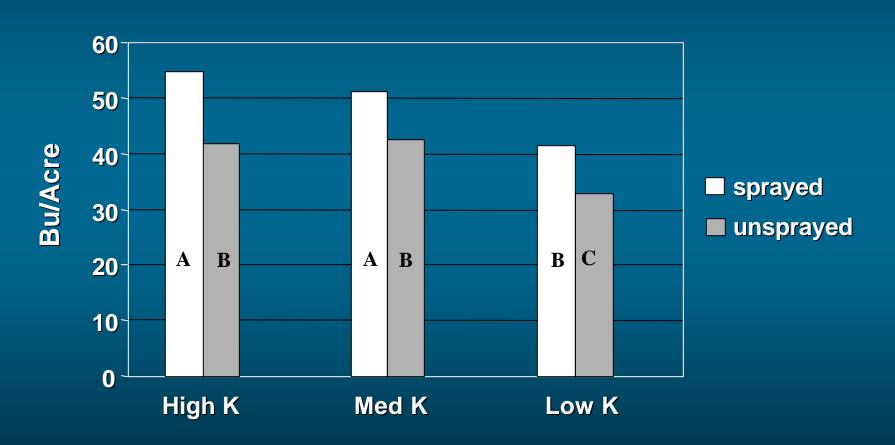
Determine the effect of K deficiency on soybean aphid population dynamics and resulting soybean yields.

Methods

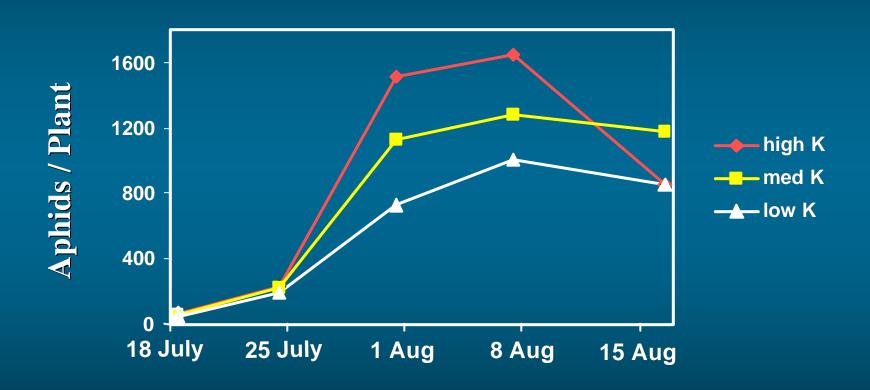
- Field experiments established at Arlington, WI
- 2001 and 2002
- Plots: 10' x 24'
- Three K levels (high, med, low)
- Sprayed and unsprayed treatments at each K level.
- Total of 6 treatments

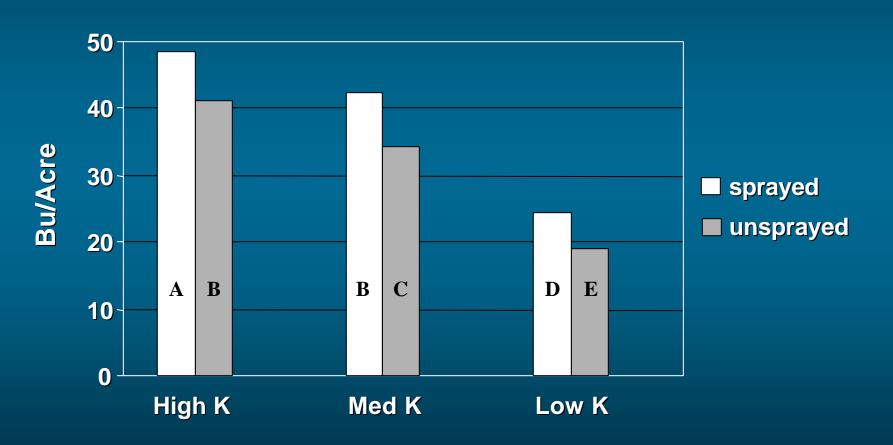

Methods cont.

- Aphid counts were taken from each plot
- 20 plants/plot in 2001 and 10 plants/plot in 2002
- Yields recorded at harvest time.


Potassium Levels (2 year average)

Treatment	Soil Avail K	Leaf Tissue K
	(ppm)	(ppm)
"high" K	111.4 A	1.88 A
"med" K	93.5 B	1.58 B
"low" K	60.8 C	1.01 C


Whole Plant Aphid Counts: 2001 Data


Soybean Yields for Aphid Infested and Non-infested Treatments at Three K Levels (2001 data)

Whole Plant Aphid Counts: 2002 Data

Soybean Yields for Aphid Infested and Non-infested Treatments at Three K Levels (2002 data)

% Yield Loss Resulting From Aphid Infestation

(spray vs unsprayed)

Treatment	2001	2002
"high" K	24 %	15 %
"med" K	17 %	19 %
"low" K	21 %	23 %
Average	21 %	19 %

Summary

- ➤ Localized patches of K deficient soybeans may result promote high aphid populations.
- The combined effects of K deficiency and aphid feeding on yield are additive.

Life Table Study

Objectives: To determine the effect of K availability in leaf tissue on SBA survivorship, reproduction, and development.

Life Table Study

- Treatments:
 - 1) leaves showing K deficiency
 - 2) leaves appearing healthy
- 10 leaves per treatment
- 1 neonate (newborn) aphid per leaf
- Leaves taken from the field and placed into petri dishes in the lab
- Individual aphids were monitored for 30 days and number of offspring recorded

Life Table Statistics

Avg. Number of Offspring Produced per Individual Aphid

K Deficient 671.7 A

Healthy 490.0 E

(N=10, P=0.003)

Life Table Summary

• K deficient plants increased aphid fecundity in the laboratory.

• However, we do not know how this translates to aphid populations under field conditions.

Conclusions

- K deficiencies appear to promote aphid infestations.

Conclusions

- K deficiencies appear to promote aphid infestations.
- K deficient plants may harbor increased concentrations of free N in the plant sap or certain amino acids that are beneficial to aphid population growth.

Conclusions

- K deficiencies appear to promote aphid infestations.
- K deficient plants may harbor increased concentrations of free N in the plant sap or certain amino acids that are beneficial to aphid population growth.
- Maintaining ample K may serve to deter aphid outbreaks, and help avoid insecticide applications.