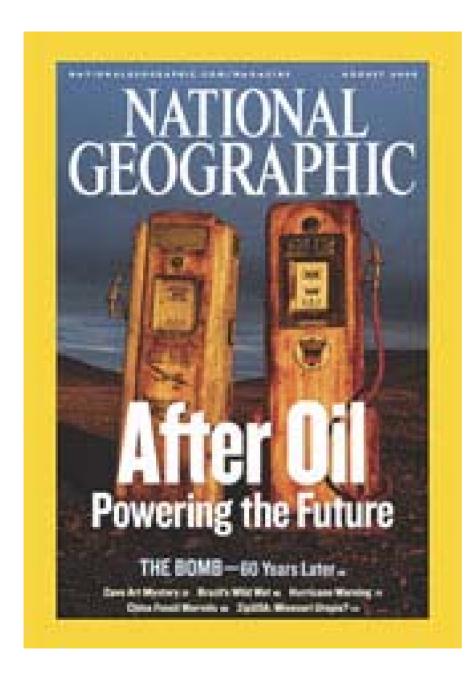
CELLULOSE ETHANOL Opportunities & Challenges

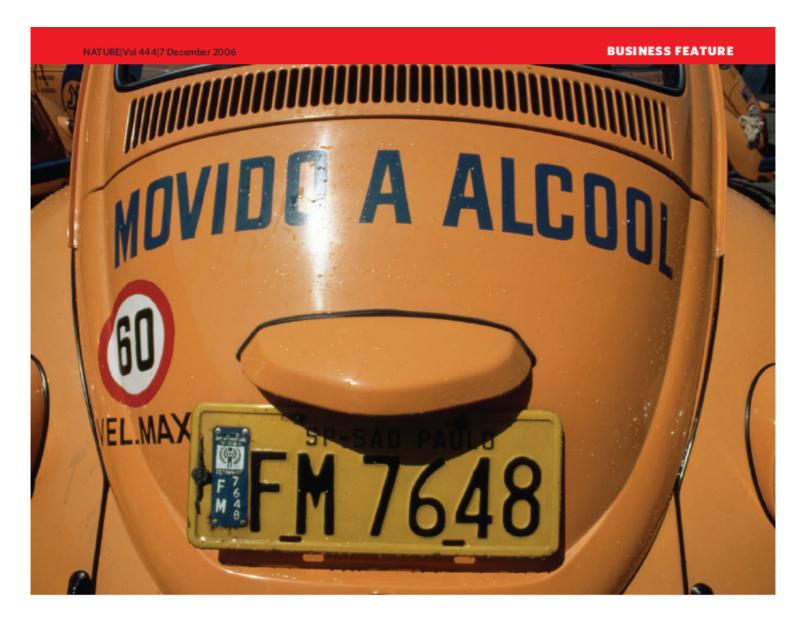
Jan. 17, 2007



"The Stone Age did not end for lack of stone, and the Oil Age will end long before the world runs out of oil."

The Economist, Vol.369, Issue 8347, Pg.12, Oct.25, 2003

ALTERNATIVE ENERGY


Nuclear energy
Solar energy
Wind power
Hydro power
Tide power
Bioenergy

BIOMASS FUELS

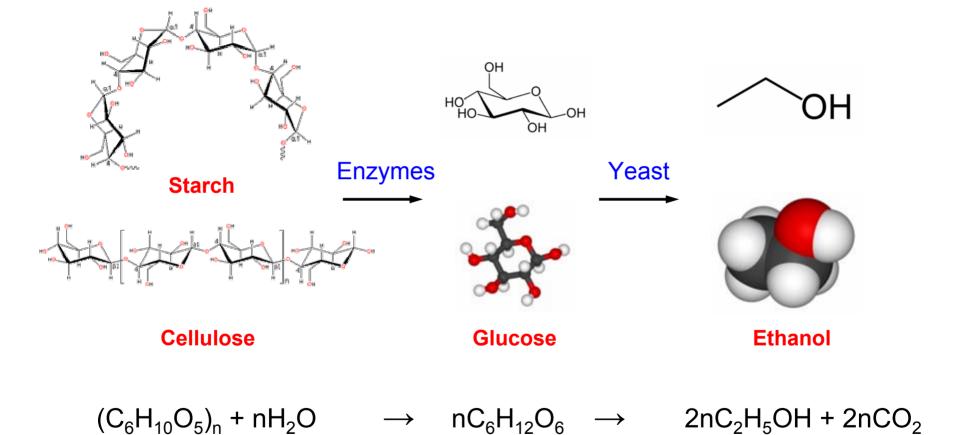
Bioethanol Biodiesel Biohydrogen

National Geographic August, 2005

BIOFUELLING THE FUTURE

Why Ethanol – Driving Forces

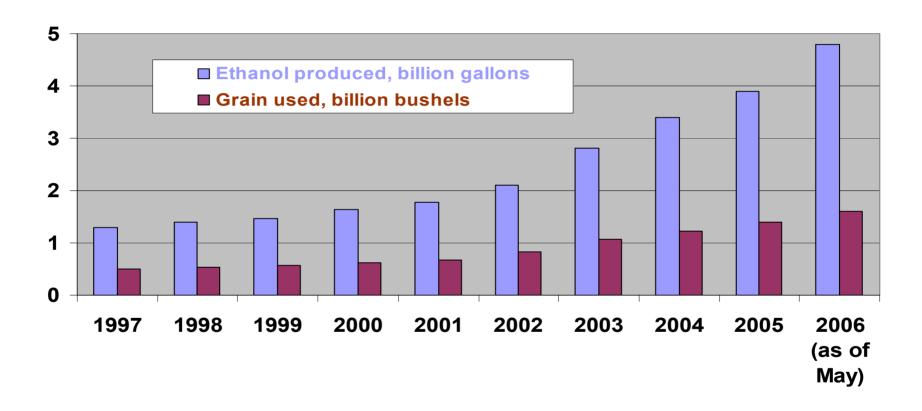
- Rising gasoline and oil price
- Energy security and sustainable supply
- Concern about GHG emission
- 7.5 billion gallon (bioethanol + biodiesel) per year by 2012 required by RFS (Renewable Fuels Standard)
- DOE 30x30 goal: 60 BGY ethanol by 2030



Why Ethanol – Advantages

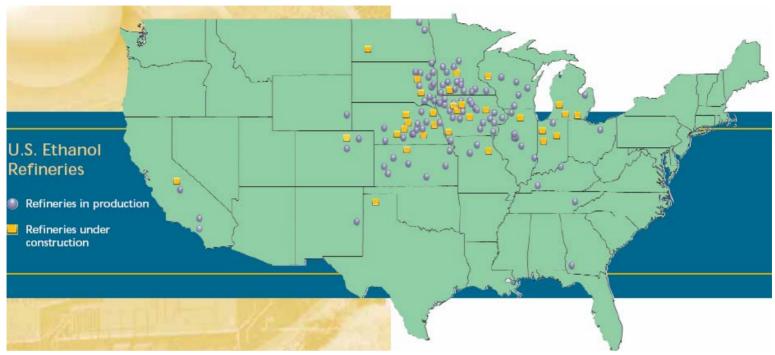
- Renewable and sustainable fuel
- Reduces dependence on petroleum fuel
- Net energy gain: ethanol yields 1.64 units of energy for each unit of energy it took to produce, just 0.8 units from gasoline (USDA).
- Reduces CO₂ emissions (potentially CO₂ neutral, recycling carbon)
- Stimulates domestic economic development
 - Increase domestic jobs
 - Increase revenue particularly in rural areas
- Can be used in today's vehicles

BioEthanol


World Ethanol Production

2005	world E	thanol Pro	oduct	ion – All (grades	s, in millior	ns of	gallons			
							······································	anamanananananan	************	****************	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
USA	4264	South Africa	103	Ukraine	65	Australia	33	Guatemala	17	Zimbabwe	5
Brazil	4227	UK	92	Canada	61	Japan	30	Cuba	12	Kenya	4
China	1004	Saudi Arabia	32	Poland	58	Pakistan	24	Ecuador	14	Swaziland	3
India	449	Spain	93	Indonesia	45	Sweden	29	Mexico	12	Others	710
France	240	Thailand	79	Argentina	44	Philippines	22	Nicaragua	7		
Russia	198	Germany	114	Italy	40	South Korea	17	Mauritius	3	Total	12150

Top 3 countries: 78%


US Ethanol Production (Last ten years)

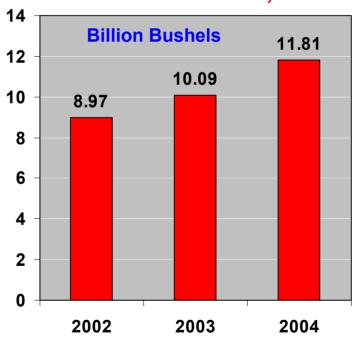
Source: RFA

US Ethanol Production Facilities

	In operation			Under ion/expansions	Total		
	Facilities	Capacity, BGY	Facilities	Capacity, BGY	Facilities	Capacity, BGY	
US	110	5.39	81	6.00	191	11.39	
WI	6	0.23	4	0.27	10	0.50	

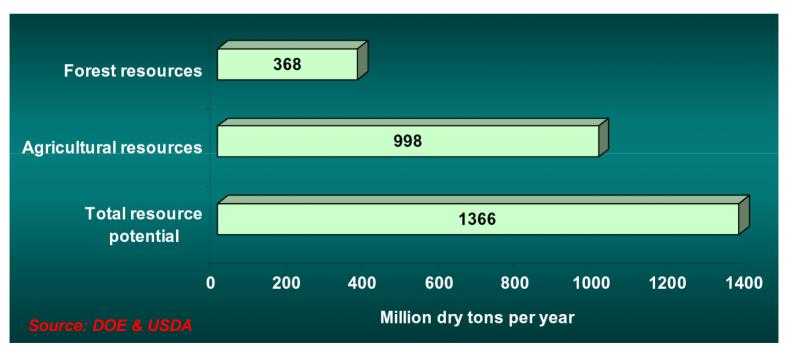
As of December, 2006. Source: RFA

Fuel Consumption in the US


- Approximately 140 billion gallons of gasoline each year
- To replace all 140 B gal with E15, 21
 B gal of ethanol required, with E85,
 119 B gal of ethanol required
- Current ethanol production: 5.4 B gal

Maximum Ethanol from Corn

- The US produced 11.8 B
 bushels in 2004
- Each bushel of corn produces 2.6 - 2.8 gal of ethanol
- Therefore, ~32 B gal of ethanol could be produced if we used 100% of the corn produced
- Maximum ~15 B gal (5.6 B bushels of corn)

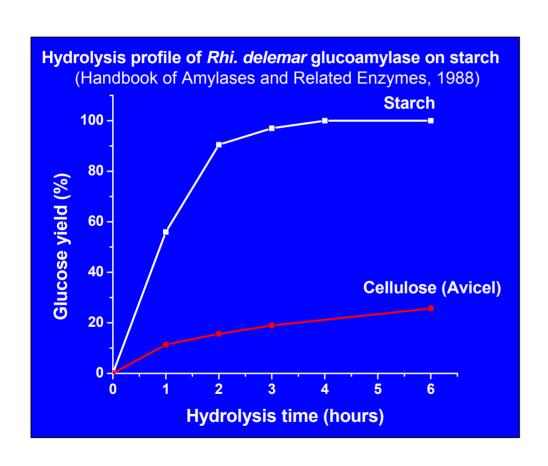

US Corn Production, USDA

Estimated Ethanol from Cellulose

- Approximately 1.4 B tons biomass available in the US
- 60 (conservative) 110 (optimistic) gal ethanol from per dry ton of lignocellulosic biomass
- Therefore, 80 150 B gal of potential cellulosic ethanol

Cellulose vs. Starch - I

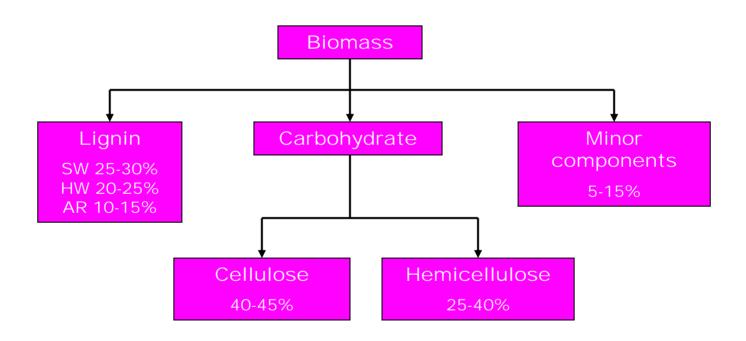
	Cellulose	Starch		
Function	Structural material	Storage material		
Structure	 β-glucosidic linkage 	 α-glucosidic linkage 		
	 Crystalline 	 Amorphous 		
Accessibility	Blocked by lignin and hemicellulose, need expensive pretreatment	Directly accessible to amylase		



Cellulose vs. Starch - II

	Cellulose	Starch
Enzymes	Cellulase • Expensive	Amylase • Inexpensive
	 Low activity 	High activity
Conversion to ethanol	DifficultExpensiveImmature technology	EasyInexpensiveMature technology
Cost of production	Inexpensive	Expensive (inputs of energy, fertilizer, water, pesticide, and herbicide)

Cellulose vs. Starch - III


Enzymatic hydrolysability

Starch:

- few enzymes required
- fast and complete hydrolysis
- operation at high substrate consistency (up to 40%)

Chemical composition of biomass

Cellulose Ethanol Production

Forest and crop residues **Biomass** Enzyme Ethanol Production Handling **Biomass** Cellulose Glucose Ethanol Pretreatment **Hydrolysis** Fermentation Recovery **Pentose** Lignin Utilization Fermentation

Pretreatment: bottleneck — expensive but cannot be skipped

Examples of intensively investigated pretreatments

- Steam explosion
- Organosolv
- Hot water/dilute acid pretreatment
- Controlled pH
- Ammonia fibre explosion (AFEX)
- Ammonia recycled percolation (ARP)
- Flowthrough/percolation
- Lime pretreatment

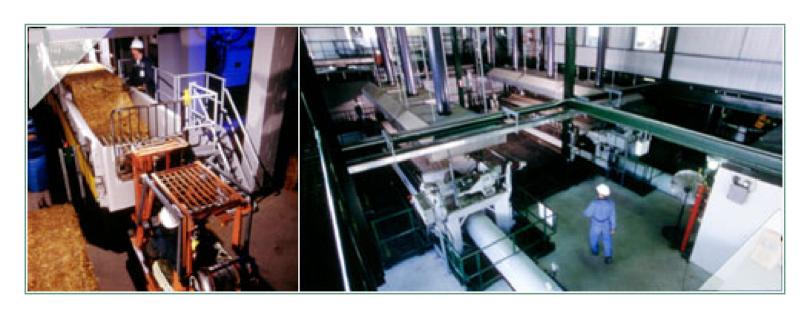
Barrier of Cellulose Ethanol

- High production cost
- How to reduce the cost from \$2.30/g to \$1.00/g?

Breakthroughs Expected

- Low-cost and effective pretreatments
- Inexpensive and high-activity enzymes
- High-consistence hydrolysis
- Fermentation of pentose (5 carbon sugars) to ethanol
- High-value co-products from lignin and hemicellulose
- Development of biorefinery

Current Status of Cellulosic Ethanol


logen (Canada)

First cellulose ethanol facility (pilot scale) in the world

Feedstock: wheat, oat and barley straws

Capacity: 40 tonnes per day of feedstock

3 million liters of ethanol per year

http://www.iogen.ca/company/facilities/index.html

Canadian former Prime Minister Paul Martin at the launching ceremony, April 21, 2004

Abengoa Bioenergy

(St. Louis, MO, the 2nd largest ethanol producer in the world)

Will be the first commercial cellulose ethanol facility in the world at Babilafuente, Salamanca (Spain)

This new facility was scheduled to be operational in fall of 2006 and designed to produce 200 million liters (52.8 million gallons) of fuel-grade ethanol (FGE) per year. The plant will use wheat as feedstock for 87.5% of production and European wine alcohol as feedstock for 12.5% of production. The production of coproducts will be 480 t/day of Distillers Dried Grains and 416 t/day of CO_2 .

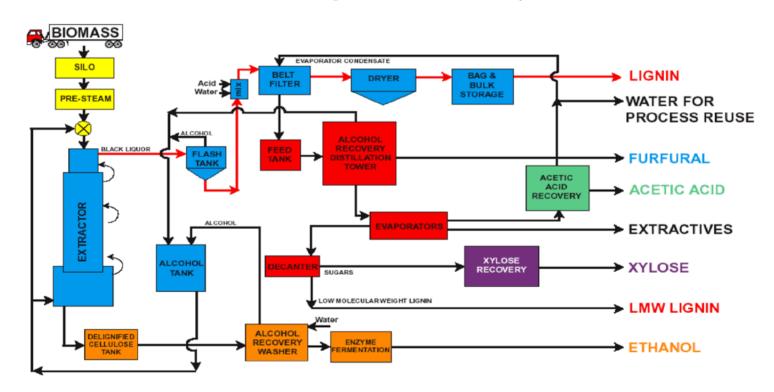
Voyager Ethanol Emmetsburg, IA

First commercial cellulose ethanol facility in the United States

- Feedstock: corn stover
- Technology: developed by Novozymes and DuPont
- Capacity: current 50 million gallons a year from corn, increased to 125 million gallons from corn and stover
- Schedule: completed by 2009

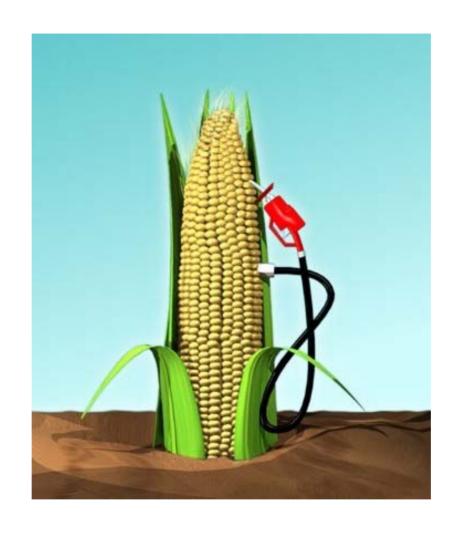
SunOpta (Brampton, ON): Bioprocess Developer

(Continuous Steam Explosion Systems, formerly StakeTech)


- Aug. 2005, continuous steam explosion process for Abengoa, 4.7 million Euros, in Spain
- Aug. 2006, continuous process system for Celunol in Louisiana

An organosolv based biorefining process for lignocellulosic biomass: in addition to fuel ethanol, the process generates high-quality and high-value co-products from lignin and hemicellulose

Commercial Lignol Biofuel Biorefinery


Pan et al. 2005 *Biotechnology and Bioengineering*, 90, 473-481 http://www.lignol.ca

Summary

- Cellulose ethanol is the future of fuel ethanol.
- Technology is under development and modification.
- Breakthroughs are expected.
- More pioneers and investments are needed.

Thank you for your attention!