Strategies for Split N Applications for Corn

Gyles Randall
Soil Scientist and Professor
Univ. of Minnesota, SROC, Waseca

grandall@umn.edu

http://sroc.coafes.umn.edu

Purpose

- To present information and recommendations on split N application strategies
 - -Primarily on medium and fine-textured soils
- To "crystal ball" the future of split-N applications

Preplant vs. Split Application 1989–1992

Conditions

- 32 sites including coarse-textured outwash, medium-textured loess, and fine-textured glacial till soils
- Growing season rainfall ranged from 36% below normal to 59% above normal
- Previous crop = soybean, corn, oat, and rye

Preplant vs. Split Application 1989–1992

Procedures

- Preplant N rates = 0, 30, 60, 90, 120, 150, and 180 lb N/A as broadcast incorporated urea
- -Split rates = 60 and 30 lb N/A as PP urea in 1989–90 and 1991–92, respectively, PLUS 30, 60, and 90 lb N/A as urea knifed in 4" deep at V5 to V6

Preplant vs. Split, 1989–92 Corn Grain Yield Summary

Sites	Total	Till	Loess	Outwash
Number	32	14	11	7
N responsive	28	14	9	5
Preplant = split	16	7	7	2
Preplant < split	8	4	1	3
Preplant > split	4	3	1	0

Preplant vs. Split, 1989–92

- Conclusions:
 - 1) Grain yield responded to N at 88% of the sites.
 - 2) Preplant application was equal to split application at 16 of the 28 responding sites (58%).
 - 3) Split application was superior to PP application at 8 sites (28%).
 - Excessive rainfall and/or sandy soils.
 - 4) Preplant application was superior to split application at 4 sites (14%).
 - Below-normal or above-normal rainfall and insufficient N rate applied early.
 - 5) Split application of N out performed PP application at 3 of 5 sandy sites, 1 of 9 loess sites, and 4 of 14 till sites and only in wetter-than-normal years.

Corn yield as affected by split-N application and precipitation.

•	•		
Time of N	Application	Year (precip	o. departure)
Preplant	12" Corn	1991 (+56%)	1992 (+16%)
- N rate	(lb N/A) -	Yield	(bu/A)
0	0	84	107
60	0	143	144
30	30	161	141
90	0	158	156
30	60	157	137
120	0	165	164
30	90	182	153
Advantag	ge for split =	+11	-11

1/27/2004

Continuous Corn, 1987–90

- Olmsted Co.
- Port Byron silt loam (loess)
- Chisel plow
- N Source = anhydrous ammonia (AA)

Continuous Corn, 1987–90

	4-Yr Average				
	N Treatment	Grain	N Reco	very in	NO ₃ -N in
Rate	Time	Yield	Grain	Silage	soil water†
lb/A		bu/A	%)	ppm
0		84			1
150	Spring PP	172	50	67	29
150	Fall	169	48	65	43
150	½ Spr. + ½ SD V6	168	46	60	47
225	Spring PP	167	33	45	43

† At a 5-ft. depth on 9/5/90.

Continuous Corn, 1987–90

Conclusions:

- 1) Highest yields and N efficiency and lowest NO₃-N in soil water were obtained with the 150-lb spring <u>preplant</u> treatment.
- 2) Yields, N efficiency, and nitrate leaching potential were <u>not</u> improved by fall or split application of N.
- 3) Excess N (225 lb N/A) did not increase yields or N efficiency but did increase nitrate leaching potential.

Continuous Corn, 1992–97

- Olmsted Co.
- Port Byron silt loam (loess)
- Chisel plow
- N Source = anhydrous ammonia (AA)

Continuous Corn, 1992–97

	N Treatment	7-Year
Rate	Time	Average Yield
lb/A		bu/A
0		63
90	PP	129
90	? PP+? SD (V6-7)	134
90	Sidedress (V6-7)	127
120	PP	135
120	½ PP + ½ SD (V6-7)	137
	LSD (0.10)	3

1/27/2004

Continuous Corn, 1992–97

- Conclusions:
 - 1) Grain yield was 2 5 bu/A higher with split applications of N in these wetter years.
 - 2) Delaying a single sidedress application to the V6-7 stage can reduce grain yield and profitability.

Continuous Corn, 1985-87

- Waseca Co.
- Webster clay loam (glacial till)
- pH = 6.7, 6.9, and 6.9
- Moldboard plowed
- N rates = 60, 120, and 180 lb N/A (Averaged)

Continuous Corn, 1985-87

N Treatment		Year [†]		3-Yr
Source - Time	1985	1986	1987	Avg.
		yield (l	bu/A)	
Check (0 lb N/A)	66	51	87	68
AA – PP	140	117	139	132
? UAN (PP) + ? AA (SD)	143	119	146	136
? UAN (PP) + ? UAN (D-SD) [‡]	130	99	110	113
? UAN (PP) + ? UAN (I-SD)‡		106	142	
? AA (PP) + ? UAN (D-SD) [‡]		113	141	

LSD(0.05) =

[†] SD UAN applied at V6-7; not incorporated in 1985, incorporated by cultivation 1 d & 2 d after application in 1986 and 1987.

[‡] D-SD = surface dribble sidedress; I-SD = inject 4" sidedress.

Continuous Corn, 1985-87

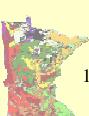
Conclusions:

- Split application with ? of the N applied sidedress as AA increased corn yield 4 bu/A (NS) over a single preplant application of AA.
- 2) Yields were reduced dramatically (23 bu/A) when? of the UAN was sidedress <u>dribbled</u> and incorporated with <u>cultivation</u>.
- 3) Yields were 7 to 32 bu/A greater when sidedress UAN was <u>injected</u> 4" deep.

Corn-Soybeans, 1987-93

- Waseca Co.
- Canisteo clay loam (glacial till)
- pH = 7.6
- One-pass (field cultivation) tillage
- N rate = 135 lb N/A as AA
- Tile drainage study

Corn-Soybeans, 1987-93


Application		7-yr Avg.	N
Time	N-Serve	Yield	Recovery
		bu/A	%
0-lb Check		95	
Fall (late Oct.)	No	131	31
"	Yes	139	37
Spring PP	No	139	40
40% PP+60% SD V8	No	145	44
LS	SD (0.10):	4	

Corn-Soybeans, 1987-93

Conclusions:

- 1) Highest yields and N recovery were obtained with the split-applied treatment. Moreover, there was no interaction between year and treatment, but greatest response to split N tended to occur in the wet years (1990–93).
- Nitrate losses in tile drainage water ranked in the order: fall N > split N > spring N = fall N + N-Serve.

Split N Options, 2001-02

- Webster clay loam
- Studies: Two tillage systems
 - One-pass, spring field cultivate
 - Fall strip tillage
- Previous crop: soybeans
- N rate: 100 lb N/A
- Time of application and N source
 - Fall: AA
 - Spring preplant: AA, urea, UAN
 - Planting: UAN (dribble or spray)
 - Sidedress: UAN at V3-4 (coulter injection)

www.progressivefarm.com

Split N Options, 2001-02[†]

Т	Yield			
Fall AA	Preplant	Planting UAN	Sidedress UAN	(bu/A)
None	None	None	None	118
w/N-S, 100				167
w/N-S, 80		Dribble, 20		154
w/N-S, 80			Coulter, 20	169
w/N-S, 60		Dribble, 40		155
w/N-S, 60			Coulter, 40	169
	AA, 100			164
	AA w/N-S			165
	Urea bdct inco	orp.		165
	UAN bdct inco	rp.		163
		Dribble, 40	Coulter, 60	175
1		Broadcast, 40	Coulter, 60	177
	† One-pass till	age	LSD (0.10):	10
1/27/2004	‡ w/NS=with N	-Serve		

Split N Options, 2001-02[†]

Т	Apparent N				
Fall AA	Preplant	Planting UAN	Sidedress UAN	Recovery	
				%	
w/N-S, 100				63	
w/N-S, 80		Dribble, 20		48	
w/N-S, 80			Coulter, 20	60	
w/N-S, 60		Dribble, 40		46	
w/N-S, 60			Coulter, 40	56	
	AA, 100			60	
	AA w/N-S			59	
	Urea bdct inco	rp.		63	
	UAN bdct inco	rp.		59	
		Dribble, 40	Coulter, 60	65	
à		Broadcast, 40	Coulter, 60	73	
	† One-pass tilla	age	LSD (0.10)	: 9	
1/27/2004 -	‡ w/NS=with N-	-Serve			

Split N Options, 2001–02

Conclusions:

- 1) Averaged across both years, greatest yields and N response occurred with the "weed and feed" program where UAN was split between 40 lb N/A broadcast preemergence and 60 lb N/A sidedressed at V3-4.
- 2) Lowest yields frequently occurred when 40 lb N/A as UAN was applied near the seed row at planting.
- 3) Apparent N recovery averaged across the two years ranged from 46 to 73%.

Factors enhancing split N performance

- Sandy, coarse-textured soils
- Above-normal growing season rainfall
 - Especially May and June
- Apply 40 to 60 lb N/A when broadcasting preplant portion
- When the preplant portion is <u>dribbled</u> within 2" of the row, use no more than 20 lb N/A
- Inject sidedress portion 4" deep by V4

Factors affecting future of split N application

- Greater environmental and economic pressures
- Less fall application
- Less AA application
- Greater availability of equipment and time
- Greater emphasis on synchronizing N availability with N uptake curve
- Greater use of remote sensing as a diagnostic tool
- P-based manure application
 - Supplemental N needs

Split Application of N: Summary

Nitrogen timing BMP's must be tailored to soil and climatic conditions. Factors such as extra labor / time demand, equipment needed, carryover of unused N, potential for using remote sensing or a soil N test to determine sidedress rate of application, and input / output economics must be carefully considered on those soils where a yield response to split application is less likely.

THANK YOU

Gyles Randall
Univ. of Minnesota,
Southern Research and Outreach Center

grandall@umn.edu

http://sroc.coafes.umn.edu

