FERTILIZER AND NO TILL CORN

Wisconsin Fertilizer Research Fund and Council

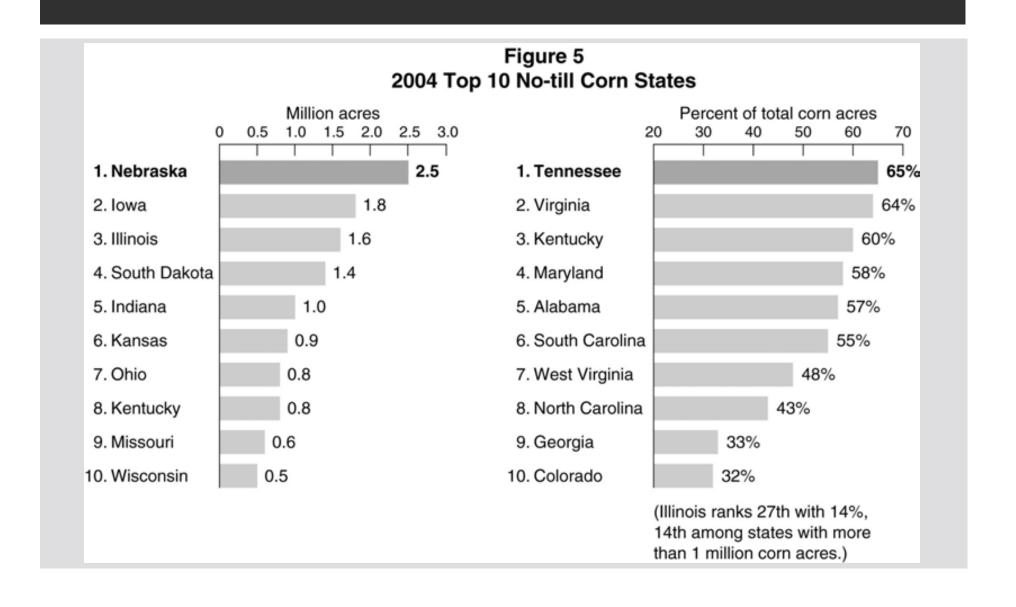
Making significant agricultural advances with fertilizer tonnage fee dollars

Matt Ruark

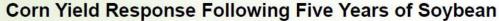
Dept. Soil Science

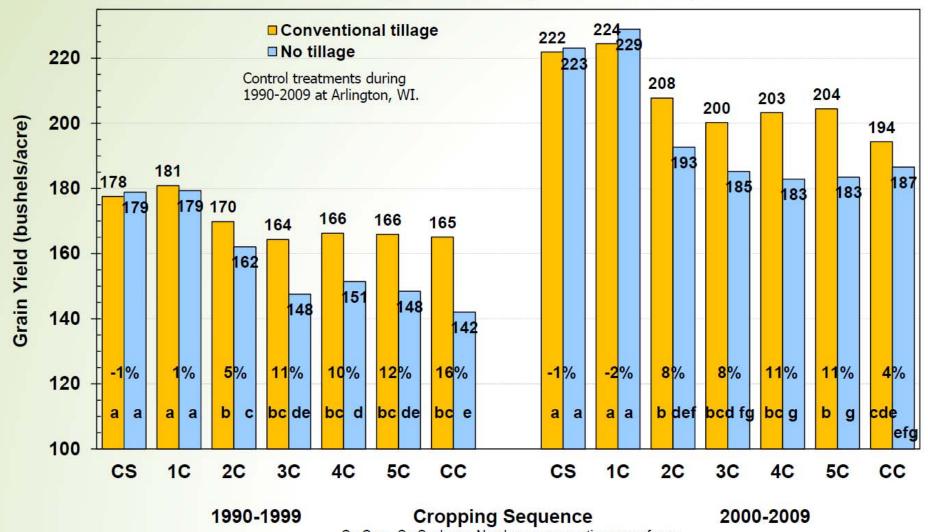
Joe Lauer

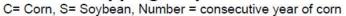
Dept. Agron.


Thierno Diallo

Dept. Agron


Mike Bertram


Arlington & Marshfield ARS


~12% OF CORN IN WI IS NO-TILL

Tillage does not affect corn yield the first year following soybean, but improves yield 5-8% in the second year, and 8-11% in the third year ...

Lauer © 1994-2011 http://corn.agronomy.wisc.edu

Source: Lauer

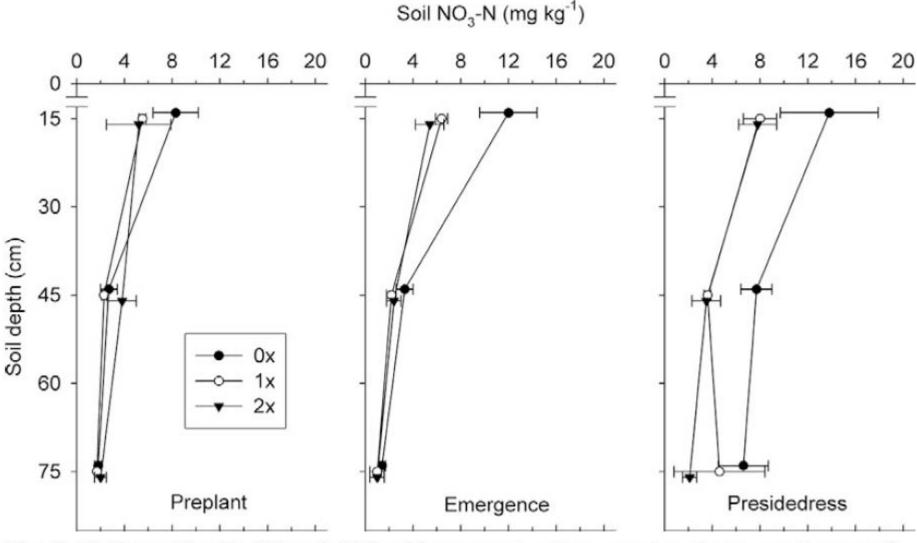


Fig. 2. Soil profile (0-90 cm) NO₃-N concentrations under three surface residue levels (0×, residue removed; 1×, normal residue; 2×, twice-normal residue) at preplant, emergence, and pre-sidedress sampling times, 1994. Error bars represent the standard deviation of the four replicates.

NO TILL AND NITROGEN

- ■An additional 30 lb/ac of N is needed to overcome this difference in soil nitrate.
- But this is only to maximize within the no-till system.
- Can we increase yields in no-till corn following corn by using different N products that protect against losses?

NO-TILL AND NITROGEN

- Another way to think about this is that if you are no-till corn-corn you are already applying more N because of the rotation and then you are also applying more because of your residue.
- And you are getting lower yields.
- Or, more likely, you are not no-tilling corn at all.
- If we can overcome this yield gap, we could reap the economic and conservation benefits of no-till.

NO-TILL AND NITROGEN

■To address this issue – over coming the yield gap – we evaluated many fertilizer N sources in no-till.

TYPES OF PRODUCTS

- Urease inhibitor (UI)
 - Agrotain®
- Nitrification inhibitor (NI)
 - ■SuperU® (UI+NI)
- Polymer coated urea (PCU)
 - **ESN®**, Environmentally Smart Nitrogen

STUDY SITES AND YEARS

Within existing no-till trials

- 1. Corn-soybean rotation, no-till since 1983 (ARL: 2009-2012)
- 2. Corn-alfalfa rotation, no till since 2010 (ARL & MAR: 2011-2012)

LONG-TERM ROTATION

- Arlington Agricultural Research Station
- Three split-plots within corn phase of continuous corn or corn/soybean rotation.
 - -AN
 - -PCU
 - **UI+NI**
- ■175 lb/ac of N

Chisel Plow systems

			Co			
Prev.	N Source	2009	Average			
Crop						
			k			
Corn	AN	224	260	193	172	212
	PCU	212	261	186	157	204
	Urea+UI+NI	213	249	188	161	203
Soybean	AN	246	268	21 0 b	201	231
	PCU	240	272	223 a	196	233
	Urea+UI+NI	249	268	201 b	206	231

No-till systems

			Co			
Prev.	N Source	2009	2010	2011	2012	Average
Crop						
			k			
Corn	AN	207	224 ab	183	160	194
	PCU	207	236 a	186	167	199
	Urea+UI+NI	207	216 b	177	161	190
Soybean	AN	248	264	223 b	203	235
	PCU	241	253	218 a	182	224
	Urea+UI+NI	239	255	208 b	201	226

WEATHER CONDITIONS FOR BENEFIT?

Volatilization

- **■**Planting 4/29/10
 - **0.6**" rain on 4/30/10
- **■**Planting 5/5/11
 - 0.25" on 5/9/11
- ■Planting 5/10/12
 - **0.4**" on 5/26/12

Leaching

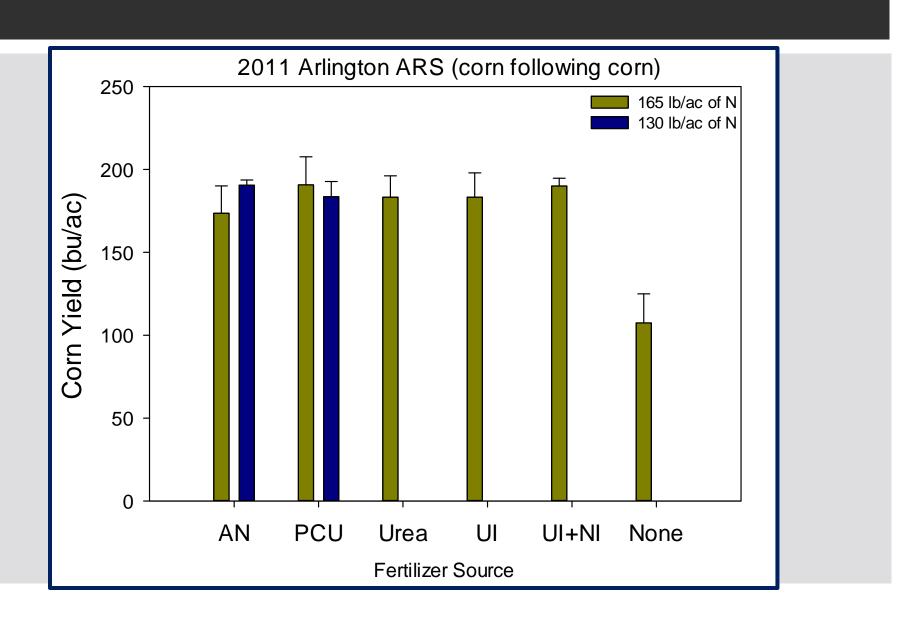
Cumulative rainfall

$$2012 = 7$$

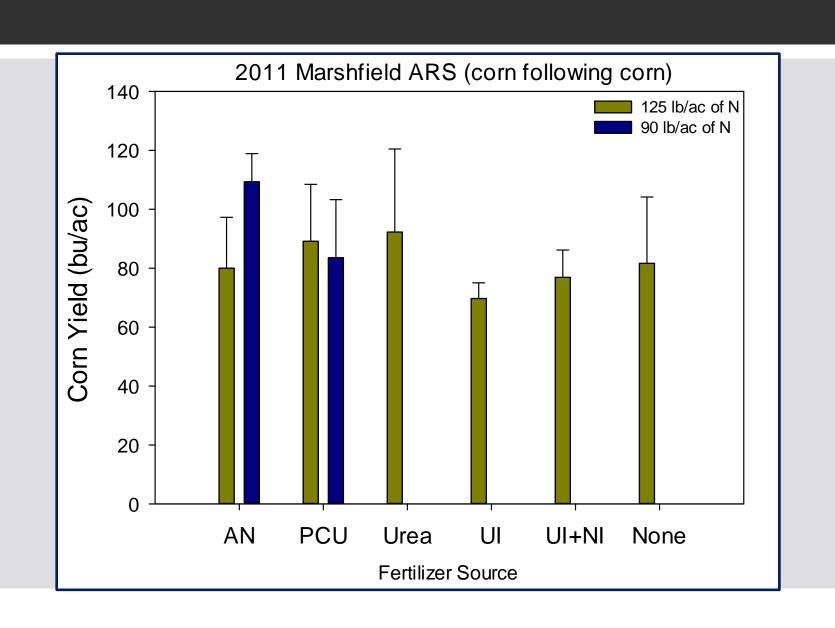
CONCLUSIONS

- ■No yield gain by applying PCU or UI+NI at high end of range (175 lb-N/ac).
- ■The N recommendation would be 165 lb/ac, with 180 lb/ac on the high end of the range.
- This was true for either tillage practice or either crop rotation.

CORN-ALFALFA ROTATION, NO-TILL


Arlington ARS

Marshfield ARS


Two rotations: C/C & AACC

- **Eight Treatments:**
- None
- Recommended rate: urea, AN, UI, UI+NI, PCU
- ■20% reduced rate: AN, PCU

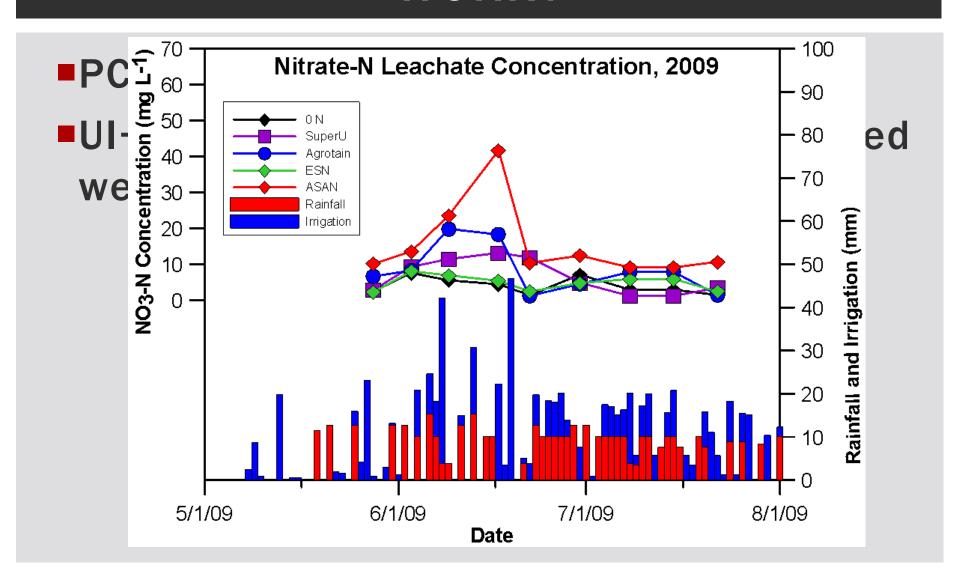
2011 ARL CC

2011 MAR CC

Arlington, WI

2012: C/C/C

2012: A/C/C


Nitrogen	Yield
165 UI	173
165 Urea	168
165 PCU	166
165 AN	163
130 PCU	160
165 UI+NI	160
130 AN	151
None	162

Nitrogen	Yield
125 AN	195
100 PCU	190
125 PCU	186
125 UI+NI	182
125 UI	177
100 AN	173
125 Urea	170
None	158

CONCLUSIONS

Benefits of the products will come from a reduced rate to maximize efficiency within a system, and not from an increase in yields. QUESTIONS?
COMMENTS?
CONCERNS?

WHEN DOES IT CONSISTENTLY WORK?

Data from: Dr. Carl Rosen Univ. Minnesota

Boom Deflector Number

12L 11L 10L 9L 8L 7L 6L 5L 4L 3L 2L 1L 1R 2R 3R 4R 5R 6R 7R 8R 9R 10R 11R 12R

% N Release (mean + SD)

Mean	47.9	39.0	38.0	57.9	28.5	34.4	23.4	24.4	15.8	14.0	12.6	13.9	16.9	13.9	25.3	15.2	30.5	30.5	30.5	32.9	46.2	42.1	49.6	53.8
Std. Dev.	2.0	3.3	17.3	3.8	2.7	2.3	1.8	10.6	1.5	1.8	0.7	1.2	1.2	1.6	6.9	2.7	4.7	2.3	4.7	16.3	4.8	3.5	7.3	4.2

Color Key

Least Damage to ESN

Moderate Damage to ESN

Heavy Damage to ESN

Sample	% N Release						
Campic	Mean	Std. Dev.					
Control (ESN-C)	6.6	0.7					
ESN from top of hopper	9.2	2.0					
Air boom deflector (ESN-A)	33.1	2.9					