

Agenda

- Lighting
- Space Heating
- Grain drying
- Grain handling
- Motors
- Efficiency Grants

Old Technology versus New

- Incandescent & HalogenReplaced by
- Compact Fluorescent Lamps (CFL)
 - 75% less power than incandescent lamps
 - Excellent color rendering qualities
 - CRI 82
 - 6 to 10 times longer life than incandescent
 - Average Life: 6,000 to 10,000 hours
 - Low starting temperatures
 - Down to -20°F, older models to 32°F or 0°F
 - Warm up to get to full output
 - Install in sealed fixtures in dusty/moist areas
 - For enclosed fixtures use rated lamps.

Old versus New

T-12 Fluorescent
 Replaced by

- T-8 Fluorescent
 - Similar to popular T-12 lamps but 1" versus 1.5" diameter
 - 20% more Lumens per watt than T-12 lamps
 - T-8 & T-12 provide about the same output per bulb (~5%)
 - 65% longer life than T-12 lamps
 - Average Life: 15,000 to 20,000 hours versus ~ 10,000 hours
 - Ballasts 40% more efficient (electronic versus magnetic)
 - Start temperatures down to 0°F (Depends on ballast)
 - -20°F for High Output version
 - No Flickering T-12 flickers >50°F

Old versus New

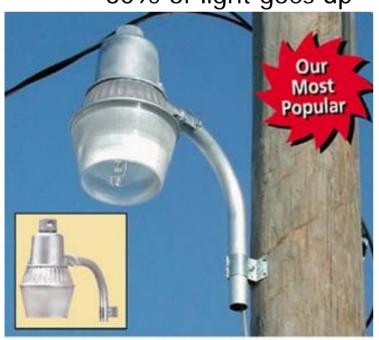
- Mercury Vapor Lamps
 - Lamp depreciation 50% every 5 years

Replaced by

- High Pressure Sodium
 - 150% more efficient
 - 2.5 watts MV = 1 watt HPS
 - Yellow/orange light
 - CRI similar to Mercury Vapor lamps
- Pulse-Start Metal Halide
 - Uses 50% less energy
 - Good color rendering characteristics
 - Warehouses, high ceiling retail space

Comparison of Lamp Types

Lamp type	Lumens/watt	Average life (hrs)	Color	CRI	CT (K)	Starting Temp. (F)	Instant On	Wattage range
Incandescent	7-20	1000	White	100	2800	>- 40°F	Yes	25-200
Halogen	12-21	2-6000	White	100	3000	>- 40°F	Yes	45-500
Mercury Vapor	26-39	24,000	Bluish	15-50	3800- 5700	-22°F	No *	50-1000
Compact Fluorescent	45-55	6000 to 10,000	White	82	2700	-20°F or 0°F	Yes *	14-29
T-12 HO Fluorescent	30-70	9000 – 12,000	White	52-90	3000 – 5000	-20°F	Yes	25-110
Metal Halide	41-79	10,000 - 20,000	Bluish	65-70	3000- 4300	-22°F	No *	150 -1000
Pulse Start Metal Halide	60-74	15,000 - 32,000	Bluish	62-75	3200- 4000	-40°F	No *	100 - 750
T-12 (1.5") Fluorescent	62-80	9000 to 12,000	White	52-90	3000- 5000	50°F	Yes	30-75
T-8 HO Fluorescent	81	18,000	White	75	3000- 5000	-20°F	Yes	86
High Pressure Sodium	66-97	24,000	Yellow- orange	22-70	1900- 2100	-40°F	No *	35-1000
T-8 (1.0") Fluorescent	76-100	15,000 - 20,000	White	60-86	3000- 5000	0°F or few 50°F	Yes	25-59 6

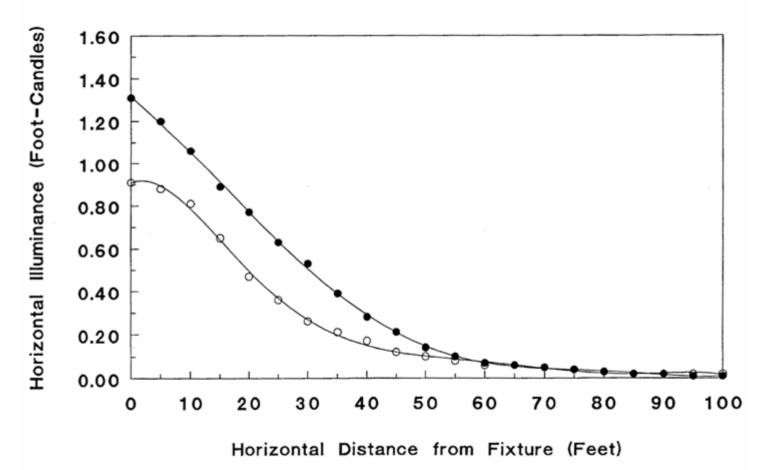

^{*} Requires warm-up to reach full output

Full Cut-off Reflector

More light in target area

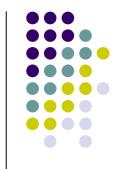
= Lower wattage needs

Standard HID Fixture with Refractor 30% of light goes up



Hubbell SkyCap
GE Sky-Guard
RAB Down Blaster

Light Distribution of MV Luminaire NEMA Type: Shielded vs. Unshielded


175W MV Unshielded

175W MV Shielded

Hubbell Skycap Retrofit (25' MH) results in 47% more light on the ground in the zone 0 - 100 ft.

Lar	np Type	Lumen Output Opera	ation Cost *
175W	Mercury Vapor	6800 L (4760 L @ 70%)	\$ 78
70W+	HP Sodium	5450 L	\$ 32
100W	HP Sodium	8550 L	\$ 46
100W	PS Metal Halide [#]	6200 L	\$ 46
150W	PS Metal Halide	8600 L	\$ 70

^{*} Includes Ballast energy usage, assumes \$0.085/kWh, 12 hours of operation per day for 365 days

^{+ 70}w HP Sodium lamp with shield will provide approximately the same light at the ground as 175w Mercury Vapor lamp un-shield.

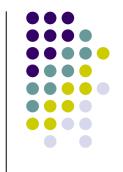
[#] PS = Pulse Start

Outdoor Lighting Controls

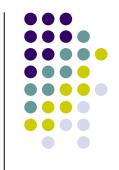
Is lighting required all night?

- Control with Clock / timer
- Photo / Motion Sensor
- DPN Half-night photo sensor
 - Measures night length daily and turns on light 1st half of night.
 - Replaces standard photo sensor
 - Cost ~ \$30 \$50
 - Thomas & Betts Corp product
 - Contact electrical supply house
 - Part Number: DPN124 2.6 TMGN

Outdoor Lighting


Low Activity Areas

- Motion/photo sensors with halogen lamps
 - Security / work locations with short duration activities
 - Lighting needed less than 3 hours per night (25% of the time).
 - Locations where instant on is required
 - Payback 1-2 years



- All lamps contain Mercury (except incandescent)
- WI State law requires
 - All businesses to recycle
 - Dispose as Hazardous waste
- Recycling
 - Distill mercury, smelt metals, glass reused
- Contact:
 - Town or County recycling Coordinator

Space Heating Needs

- High Efficiency heaters
 - Gas 90% plus efficiency
 - Oil 80% plus efficiency
 - Condensing furnaces
 - Forced Air or Hydronic Systems
- Maintenance
 - Change filters
 - Clean burners
 - Belts

Radiant Heating

- Use in large volume areas or high ceilings
- Heats objects not air
 - Re-radiated heat warms air
- Quick heat recovery
- Localized heating within warehouse
- Saves energy

Grain Dryer

Energy Efficiency

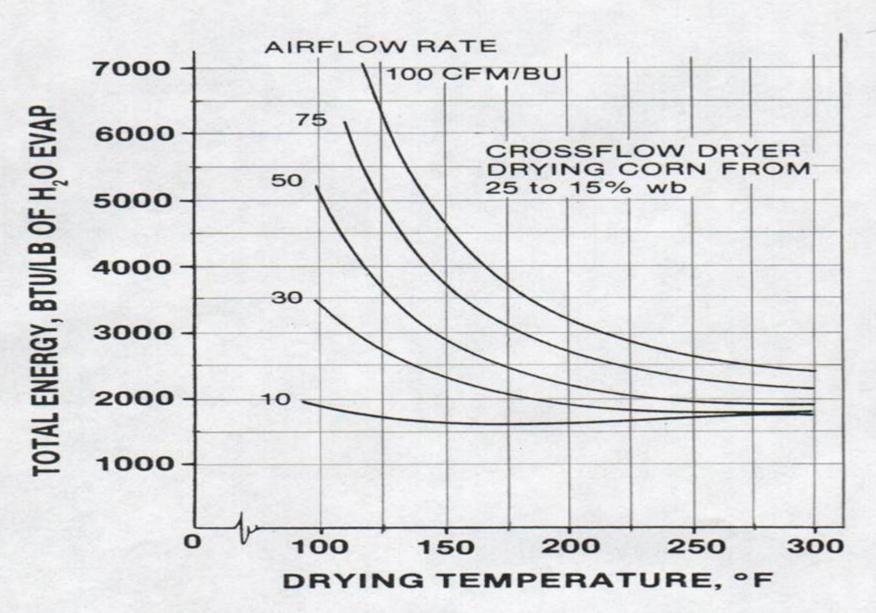
- BTU per pound of water removed from grain
- No dryer performance standards
- Limited independent dryer test data
- Limited research data

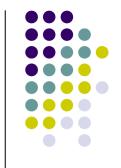
Rule of thumb fuel usage


- Cross-Flow High-Temp. dryer
 - 0.02 gallon propane/ bushel / % moisture removed
 - 0.018 Therms NG / bushel / % moisture removed
 - 0.01 kWh Electricity / bushel / % moisture removed

Dry Clean Grain

- Screen before drying
- Screen before storage
 - Less volume to dry
 - Increased air flow in dryer
 - Less materials to plug screens and aeration floors

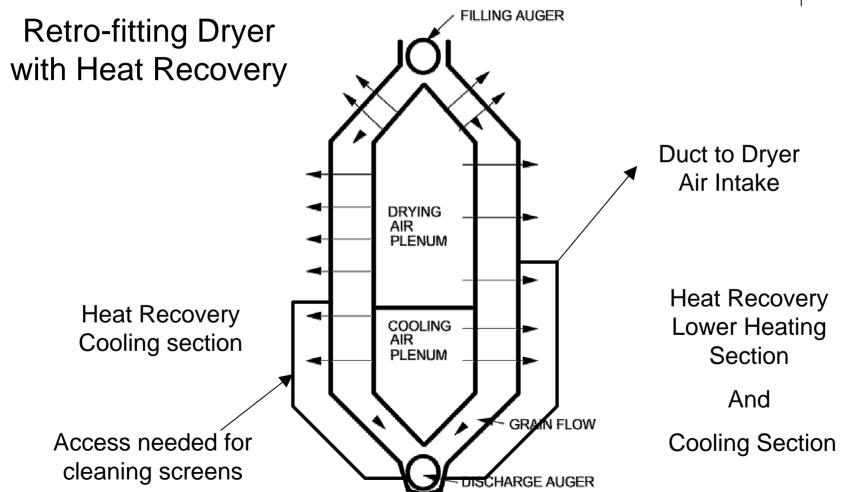



Conventional Crossflow Column Dryer In-Dryer Cooling

Cross-Flow Column Dryer

Cross-flow Column Dryer Heat Recovery Options

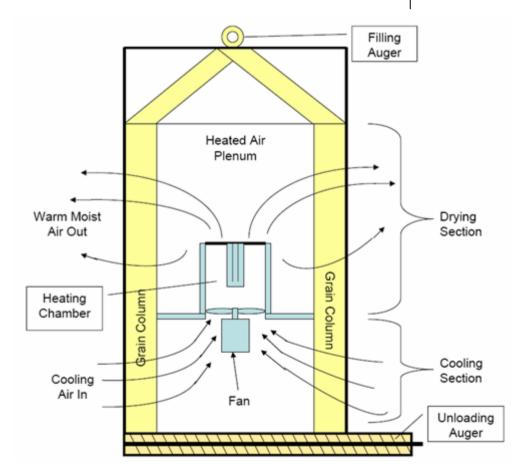
Scavenge Heat from hot corn to pre-heat inlet air to dryer


- Reduces energy usage 10 to 20%
- Duct exhaust air from cooling section to air intake of heater
 And (optional)
- Recovered from lower portion of drying section of dryer

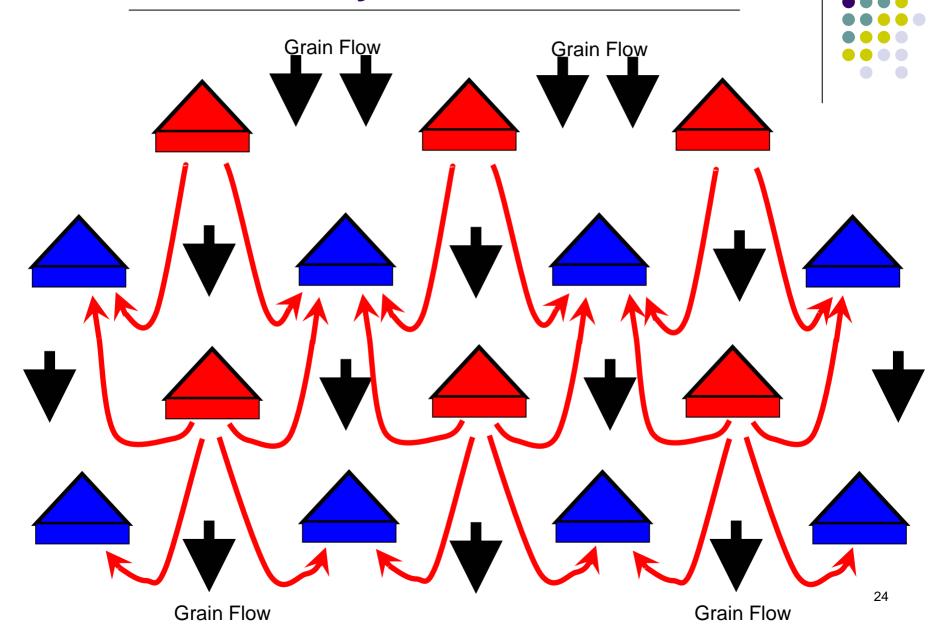
Or

Reverse air flow through Cooling Section of dryer

Duct Work for Heat Recovery



Reverse Flow Cooling



Mixed Flow Dryer – 900 Bu/hr

Mixed Flow Dryer - Air Flow Patterns

Mixed-Flow Column Dryer

- High efficiency column dryer 2050 Btu/# H₂O
 - Up to 35% more efficient than typical cross-flow dryer
- No screens to plug
- Handles wide range of seed sizes
- Continuous flow process
- Multiple heating zones possible
- Uniform drying of seeds higher grain quality
- Can be used with in-bin cooling or dryeration
- Not widely used in Midwest,
 - Predominant in Europe, Asia, Latin American
- Disadvantage:
 - Higher cost ???
 - Fast payback on additional investment 1 to 3 years

In-Bin Continuous Flow Dryer Options

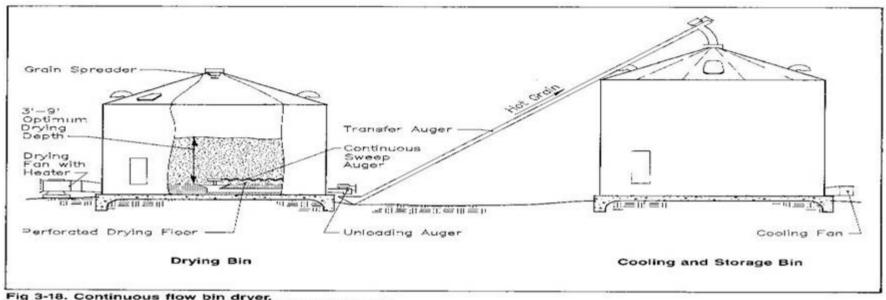


Fig 3-18. Continuous flow bin dryer.

A transfer auger moves grain intermittently to cooling in storage bins.

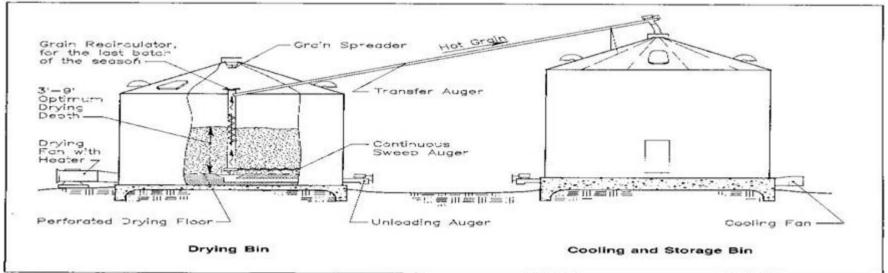
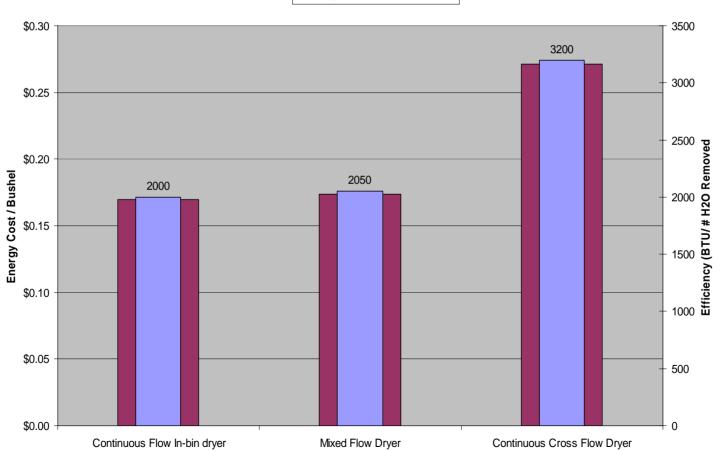


Fig 3-19. Continuous flow recirculating bin dryer.

At least one more storage bin equipped to properly cool hot grain is common.

In-Bin Continuous Flow Dryer

- Most energy efficient high temperature dryer
 - Counter Flow exchange of energy
 - 35 to 40% more energy efficient than cross-flow dryer
- Superior grain quality (MSU test report)
 - Uses in-bin or dryeration cooling
- No wet bin needed
- Dry grain removed from bottom
- Less over drying of grain
- Fully Automated drying
- Capacity 8000 to 17,000 bu/day (300 to 700 bu/hr)
- System can be retrofitted to an existing bin
- Bin useable for storage at end of drying season
- Disadvantages
 - Capacity can not be expanded easily
 - Fines must be removed from bin floor every 3-4 days
 - Cleaning grain entering dryer lengthens cleaning interval


Propane: \$1.40/gal Electric: \$ 0.085/kWh

Dryer Efficiency & Energy Cost

Drying corn from 23% to 15%

In-Bin cooling

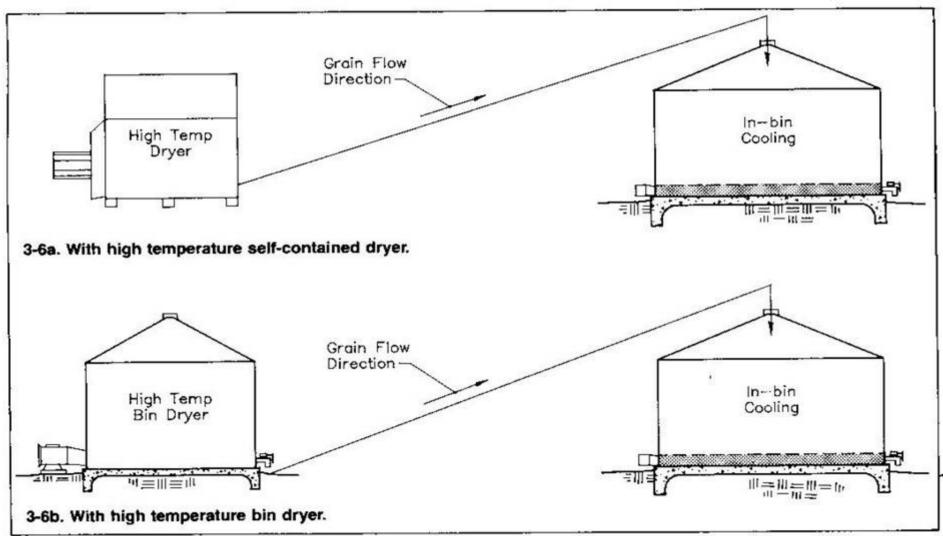
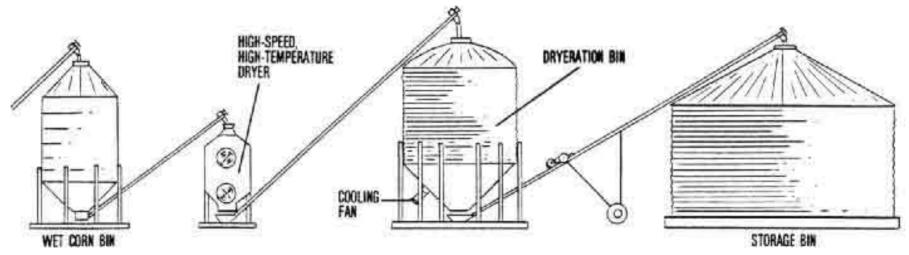
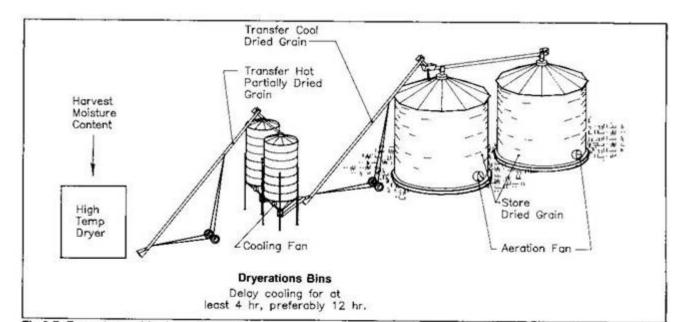


Fig 3-6. In-bin cooling.

Grain dried in a high temperature dryer or bin and cooled in a separate storage.


In-Bin Cooling



- Used with high-temperature full-heat dryer
 - Continuous-flow or batch
- Transfer hot grain (120 to 140°F) to storage bin
- Moisture: 1 to 1.5% above desired storage moisture
 - Remainder of drying occurs as grain cools
 - Moisture reduction: ~0.2% per 10°F of temperature decrease
- Start cooling fans immediately
- Reduce fuel costs at least 10-15%
- Increase dryer capacity about 33%

Dryeration

Dryeration

- Transfer hot grain (120 to 140°F) to cooling bin
- Moisture: 2-3% above storage moisture content
- Grain allowed to "Temper" for 4 to 12 hours
- Cool grain
 - Remainder of drying occurs as grain cools
 - Moisture reduction: ~0.4% per 10°F of temperature decrease
- Transfer grain to storage bin
- Energy savings: 15% 25%
- Dryer capacity: increases up to 70%
- Improved grain quality
 - Fewer stress cracked kernels and breakage

		Cracks	Breakage
•	Rapid cooling	43.6%	11.3%
•	Dryeration	7.6%	6.7%

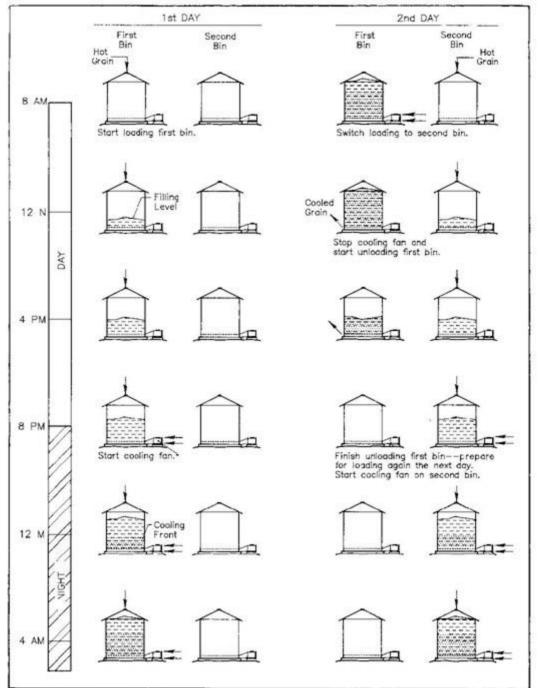


Fig 3-8. Typical dryeration 24 hr cycle with 2 bins.

Dryer Maintenance

- Keep screens and aeration floors clean
- Check and tighten belts
- Check burner operation –
 blue flame
- Calibrate moisture sensors
- Check that bearing mountings are tight
- Lubricate as recommended by mfg.

Side Discharge from Grain Bins

- Reduce handling costs
- Faster loading
- Put gravity to work

 Discharge must extend to center of bin

Motor Matters

- Premium Efficiency Motors (3 Phase) (1997 and later)
 - 2-4% more efficient
- Planned Replacement / Rewind Decisions
 - Rewind vs new EPAct vs Premium Efficiency
 - Resources:
 - http://eereweb.ee.doe.gov/industry/bestpractices/software.html#mm
 - www.motorsmatter.org/
- High Efficiency Single Phase motors
 - 4% to 19% higher efficiency
 - ¼ HP to 5 HP motors
 - Baldor Premium Efficiency 1/4 HP to 5 HP
 - Leeson WATTSAVER® 1/3 hp to 2 HP
- Motor / Drive Maintenance
 - Belts, roller chains, drive couplings, gear boxes

Energy Efficiency Grants

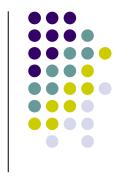
Focus on Energy

- Utility must be participating in program
 - All investor owned utilities, Alliant, WPS, WE Energies...
- Free energy audits
- www.focusonenergy.com
- Contact Agricultural consultant
 - 1-800-762-7077
- 2002 Farm Bill Energy Efficiency Grants
 - Application period typically March to June
 - Minimum grant \$2500 up to 25% of project cost

Renewable Energy

Ethanol

truck fuel


Bio-Diesel

- truck fuel
- Wind Turbines
 - electricity
- Thermal Solar
- space heating

Bio-gas

space heating/ corn drying /electricity

Contact Information

Scott Sanford

Sr. Outreach Specialist Focus on Energy / Rural Energy Issues Biological Systems Engineering

University of Wisconsin – Madison 608-262-5062

sasanford@wisc.edu

Wisconsin Energy Efficiency and Renewable Energy

www.uwex.edu/energy