Developing and Using the Iowa P-Index

Dr. John E. Sawyer

Associate Professor

Soil Fertility Extension Specialist

Department of Agronomy

Iowa State University

IOWA STATE UNIVERSITY

University Extension

Individuals Contributing to Development of the Iowa P-Index

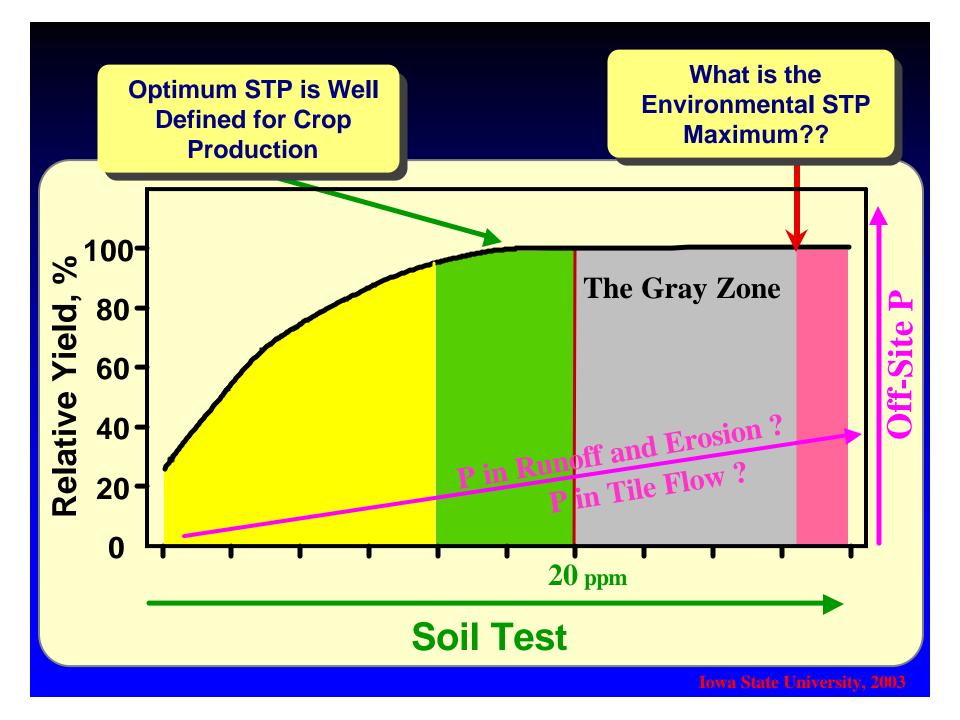
Iowa State Univ.

- James Baker
- John Downing
- Thomas Fenton
- Antonio Mallarino
- Gerald Miller
- John Sawyer
- Regis Voss

* NRCS

- Mark Jensen
- Douglas Johnson
- Barbara Stewart
- USDA NSTL
 - John Kovar
 - > Thomas Sauer

Eutrophication of Surface Waters


- Enrichment of dissolved nutrients, increased algal growth, and undesirable water conditions
 - Main issue is phosphorus (P)
 - > For P only very low concentration
 - Surface water total P above approximately 70 to 100 ppb

Focus on Phosphorus Moving from Farm Fields

- NRCS Nutrient Management Alternatives
 - ➤ By spring 2001 states must adopt one of these approaches:
 - Soil-test P for crop production
 - Soil P threshold
 - P risk index

Reasons for Choice of the P-Index Concept

- Soil-test P interpretation classes for crop production not useful for environmental considerations
- Soil P thresholds may vary with soils, soil management practices and P management

Advantages of the Iowa P-Index

- Integrates soil, landscape, and management factors that influence P delivery to surface water bodies
- Provides a risk rating
- Helps identify causes of high P delivery and provides options for improved soil conservation and P management

Iowa P-Index

- Two source factors
 - > Soil P
 - P application
- Three P transport mechanisms (components)
 - > Soil erosion
 - > Water runoff
 - > Subsurface drainage

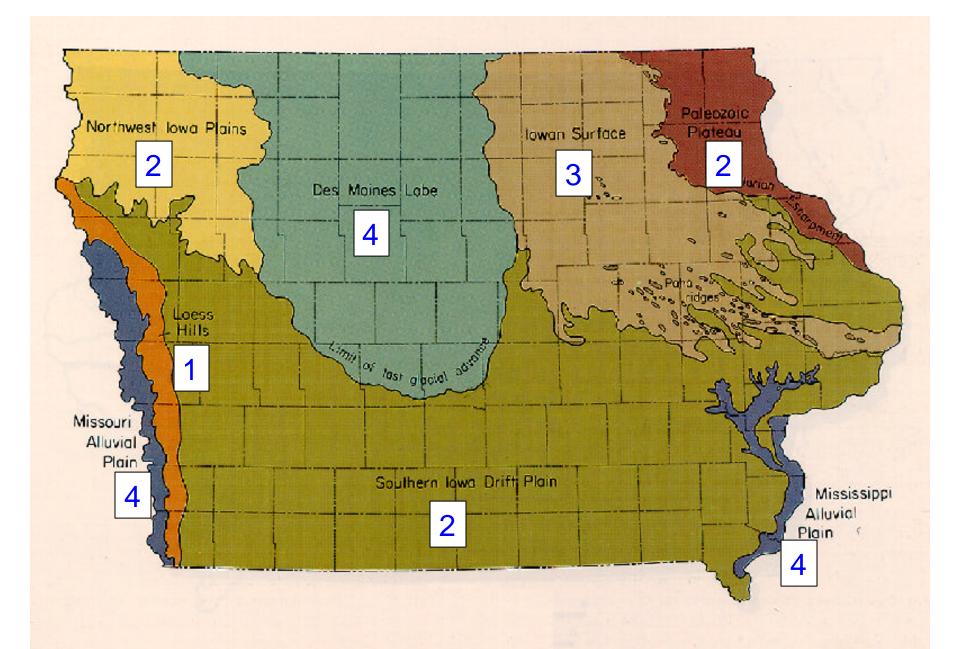
Basic Concepts of the lowa P- Index

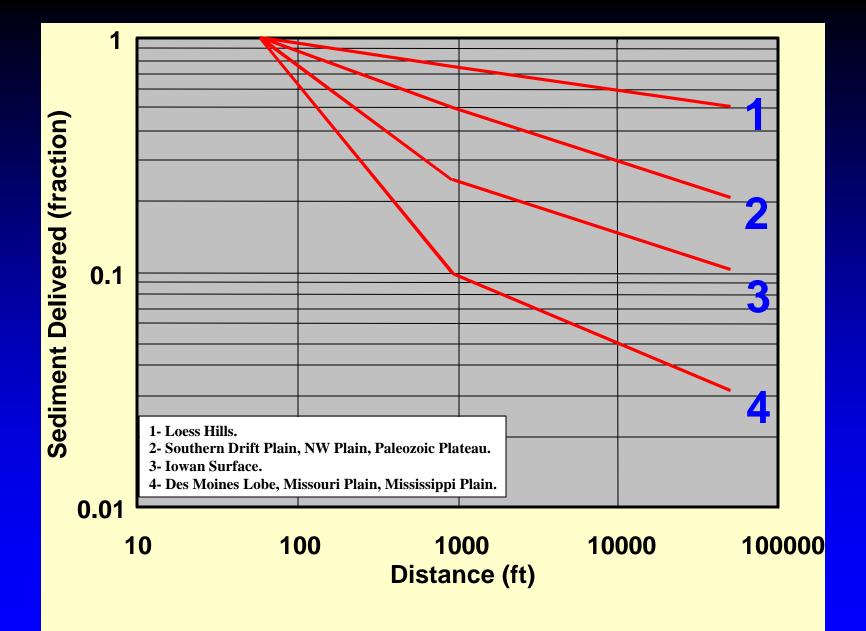
- The sum of the three components gives an overall estimate of P delivery from fields
 - > Soil Erosion, Water Runoff, Subsurface Drainage
- Five risk classes (VL to VH)
- Uses NRCS tools to estimate impact of landforms, soil map units, and management on soil and water loss
- Uses common soil P test values

Basic Concepts of the lowa P- Index

- Considers dissolved P in water and P in sediment that will be released to water over a period of time
- Does NOT differentiate between P sources (water solubility of some organic sources may influence the short-term impact of P applications but not necessarily long-term loss)

Basic Concepts of the lowa P- Index


- Can be applied to a field or to conservation management units (CMU) as defined by NRCS:
 - a field or field portions of the same land use and management plans
 - is based on the most representative part of the field or CMU


Erosion Component

- Total gross soil erosion estimates (RUSLE, ephemeral, gully)
- Sediment trap or NRCS Sediment Delivery Ratio (SDR) factor
- Buffer strip factor
- Sediment enrichment factor
- Total soil P (concentration) factor

SEDIMENT TRAP FACTOR

Conservation Practice	Factor
Level terrace	0.00
Ponds, tile inlet terrace, or grade stabilization impoundment	0.05
Water & sediment control basin	0.20

BUFFER (FILTER STRIP) FACTOR

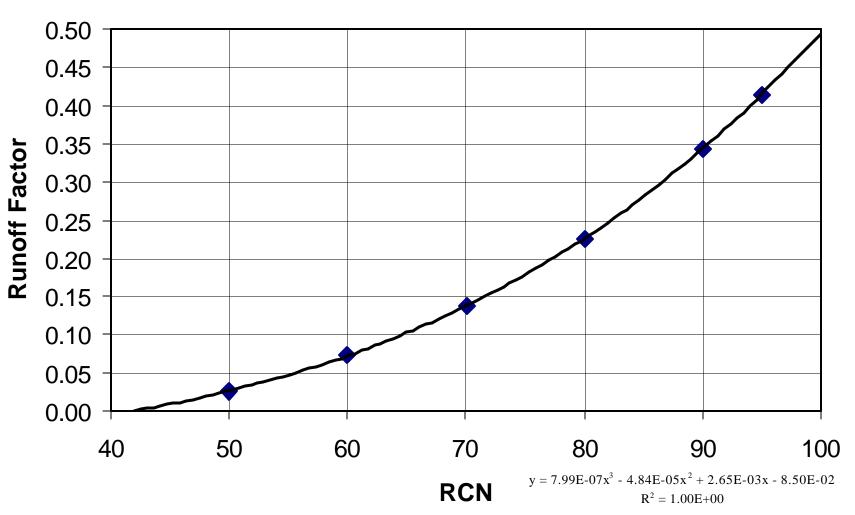
Buffer Width	Factor
Less than 20 feet	1.0
20 to 75 feet	0.7
More than 75 feet	0.5

SEDIMENT ENRICHMENT FACTOR

Management Practice	Factor
Forage or no-till crop with buffer	1.3
No-till no buffer or till with buffer	1.2
Tillage without buffer	1.1

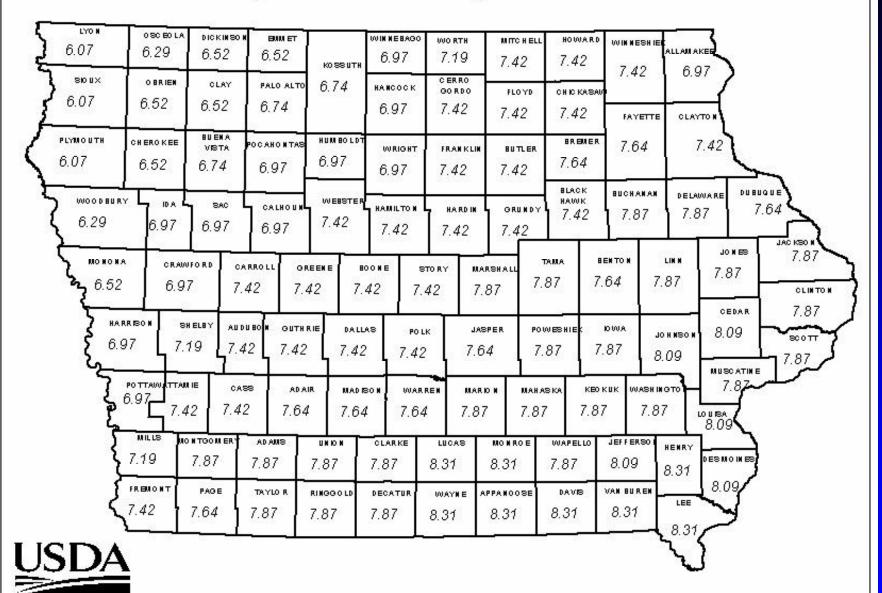
TOTAL SOIL P FACTOR

Total Soil P Content Adjusted Upward by 0-6 Inch Soil-Test P


Total P (ppm) = $500 + (3 \times STP)$

70% of the total P available for aquatic plant growth

Water Runoff Component


- NRCS Runoff Curve Numbers (for landforms, vegetation cover, etc.)
- County average precipitation
- P application (concentration) factor:
 - ▶ Rate effect on soil-test P increase
 - Method and Time of application Dissolved (ppm P) = $((P_2O_5/4.58) \times 0.5) \times 0.005 \times M&T$
- Soil-test P runoff (concentration) factor Dissolved (ppm P) = 0.05 + (STP*0.005)

Phosphorous Index Factors for Surface Runoff Using Runoff Curve Numbers

Iowa State University, 2003

Phosphorus Index Precipitation Factor

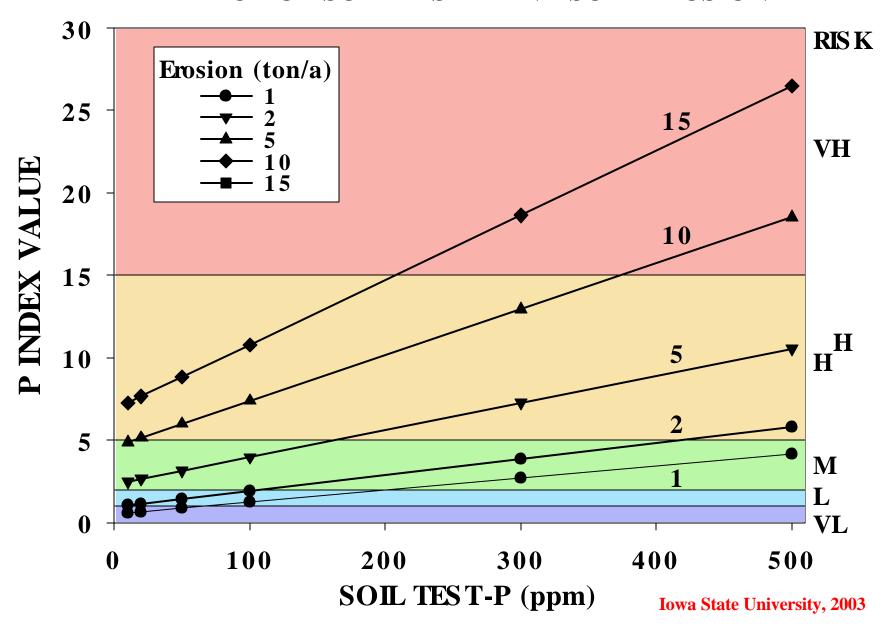
METHOD OF P APPLICATION

Method/Time of Application	Coefficient
Incorporation/injection within 24 hrs	0.4
Incorporate within one week	0.6
Surface applied (good conditions)	1.0
Surface app. to frozen/snow ground	1.5

Runoff Factor for P Application Rate and Method of Application				
Р	Incorporate		Surface	Surface Application
Application	or Inject	Incorporate	Application	Frozen/Snow Covered,
Rate	Within 24 Hours	Within One Week	No Incorporation	Saturated, or Floodplain
Ib P ₂ O ₅ /acre				
0	0.00	0.00	0.00	0.00
10	0.00	0.00	0.01	0.01
20	0.00	0.01	0.01	0.02
30	0.01	0.01	0.02	0.02
40	0.01	0.01	0.02	0.03
50	0.01	0.02	0.03	0.04
60	0.01	0.02	0.03	0.05
70	0.02	0.02	0.04	0.06
80	0.02	0.03	0.04	0.07
90	0.02	0.03	0.05	0.07
100	0.02	0.03	0.05	0.08
120	0.03	0.04	0.07	0.10
140	0.03	0.05	80.0	0.11
160	0.03	0.05	0.09	0.13
180	0.04	0.06	0.10	0.15
200	0.04	0.07	0.11	0.16
220	0.05	0.07	0.12	0.18
240	0.05	0.08	0.13	0.20
260	0.06	0.09	0.14	0.21
280	0.06	0.09	0.15	0.23
300	0.07	0.10	0.16	Iowa State 0.25 ersity, 2003

Subsurface Drainage Component

- A 10% flow estimate
- Presence of tiles or sandy subsoil recharge to surface water yes/no: value = 0 if no
- County average precipitation
- Soil-test P drainage factor:
 - 0.1 if STP < 100 ppm Bray 1-P
 - 0.2 if STP 3 100 ppm Bray 1-P


Site Vulnerability Ratings

- ❖ Very Low (0 1): Small impact
- Low (1 2): Greater than for VL but still low impact
- Medium (2 5): Acceptable impact, but watch future practices so there is no increase in the risk of P delivery

Site Vulnerability Ratings

- High (5 15): Large impact new soil conservation and/or P management practices must be implemented
- Very High (>15): Extreme impact new soil conservation practices plus a P management plan that may require discontinuing P applications must be implemented

IMPACT OF SOIL-TEST P AND SOIL EROSION

Index Component		Fayette County A
Gross Erosion	5	RUSLE erosion: 5 ton
Sediment Trap/SDR	0.64	PP: 350 feet
Buffer Factor	1	Buffer: None
Enrichment Factor	1.1	Tillage without Buffer
STP Erosion Factor	1.03	Bray 1-P: 79 ppm
Erosion	3.63	
Runoff Factor	0.22	RCN: 79
Precipitation Factor	7.6	Fayette County
STP Runoff Factor	0.45	Bray 1-P: 79 ppm
P Application Factor	0.03	83 lb P ₂ O ₅ /acre; Inc. One Week
Runoff	0.80	
Flow Factor	0.1	Tile/Coarse Subsurface: No
Precipitation Factor	7.6	Fayette County
STP Drainage Factor	0.1	Bray 1-P: 79 ppm
Subsurface	80.0	
		Iowa State University, 2003
P-Index	4.50	[0-1 VL; 1-2 L; 2-5 M; 5-15 H; >15 VH]

Index Component		Fayette County A - 12
Gross Erosion	12	RUSLE erosion: 12 ton
Sediment Trap/SDR	0.64	PP: 350 feet
Buffer Factor	1	Buffer: None
Enrichment Factor	1.1	Tillage without Buffer
STP Erosion Factor	1.03	Bray 1-P: 79 ppm
Erosion	8.70	
Runoff Factor	0.22	RCN: 79
Precipitation Factor	7.6	Fayette County
STP Runoff Factor	0.45	Bray 1-P: 79 ppm
P Application Factor	0.03	83 lb P ₂ O ₅ /acre; Inc. One Week
Runoff	0.80	
Flow Factor	0.1	Tile/Coarse Subsurface: No
Precipitation Factor	7.6	Fayette County
STP Drainage Factor	0.1	Bray 1-P: 79 ppm
Subsurface	0.08	
		Iowa State University, 2003
P-Index	9.58	[0-1 VL; 1-2 L; 2-5 M; 5-15 H; >15 VH]

Review of Main Concepts

- A comprehensive assessment tool
- Considers P management and soil conservation practices
- No soil-test P or P application limits
- Provides alternative P management and soil conservation practices to reduce the risk of offsite P delivery

lowa P-Index Applied When:

(lowa NRCS 590 Standard: as of 11-22-00)

- With voluntary cost share program addressing water quality
 - Impaired surface water body
 - By DNR 303d list impaired for P
 - Manure application
 - Very high soil test P
 - Agronomic very high class
 - Soil Loss > T

Iowa P-Index Web Site and Documents

- http://www.ia.nrcs.usda.gov/
 - > Technical Note 25 The Iowa P Index
 - Background and Basic Concepts
 - > P Index Fact Sheet
 - Iowa P Index Calculator
- http://www.swcs.org/t_pubs_journal_Nov Dec02_phosphorusindexing.htm
 - Phosphorus indexing for cropland: Overview and basic concepts of the lowa phosphorus index

Questions/Issues

- Emphasis on soil erosion and soil conservation practices
- Low incidence of risk above medium rating
- NRCS suggesting use of "worst case scenario" in fields
- Use of index in sub-field areas

Questions/Issues

- May allow soil test P buildup to "unreasonable" levels
- Does not "determine" P application rate
- No inclusion of catastrophic P loss events
- Regulatory use

P-Index Future in Iowa?

- Senate File 2293 passed spring 2002
 - Jowa DNR to develop P Index by rule based on NRCS Technical Guide for Iowa
 - Cooperate with NRCS State Technical Committee to refine and calibrate P Index
 - P Index shall be used to determine application rates
- Legislative action in 2003?

