

University of Wisconsin Extension Recommendations

Nitrogen rates for winter wheat

	N to apply (lbs/acre)				
Yield Goal	Soil organic matter content				
	<2%	2-9.9	10-20	>20	
40-90 bu/acre	80	60	40	0	

Subtract legume and manure credits from these base recommendations;

No specific guidelines on application timing.

University of Minnesota Recommendations

Partial listing

Previous	Yield Goal – bu/ac			
Crop	<u>OM</u>	<u>60-79</u>	70-79	80-89
Non-legumes	<3%	130	155	170 _Z
	<u>></u> 3%	110	135	to appl
Soybeans	<3%	110	135	150 pply
	<u>></u> 3%	90	115	130 b
Alfalfa	<3%	80	105	120 120
2-3 plants/sq ft	<u>></u> 3%	60	85	100 ^{ਕਿ}

Michigan State wheat N recommendations

Wheat yield goal (bu/acre)	50	60	70	80	90+
Pounds N/acre	40	60	75	90	110

Apply no more than 25 lbs N in the fall, with balance applied early in the spring before ground thaws and stems begin elongation.

Indiana –Purdue University Recommendations

Regardless of soil type, 15 to 30 lbs N should be applied at seeding with the balance topdressed as regrowth begins.

	Topdress N fertilizer rates at various			
CEC	yield goals			
meq/100g	55-64	65-74	75-85	85+
<6	70	80	90	100
6-10	60	70	80	100
11-30	50	60	70	90
>30	40	50	60	60

Iowa State University Recommendations – Winter wheat

Lbs N = bu/acre yield potential X 1.3

Eg., For a 90 bu/acre yield goal, recommendation would be 117 lbs N/acre.

University of Illinois Nitrogen for winter wheat (lbs/acre)

Soil OM	Planted w/	No alfalfa or
Content	alfalfa or clover	clover seeding
	Clovei	
<2%	70-90	90-110
2-3%	50-70	70-90
>3%	30-50	50-70

University of Illinois Nitrogen for winter wheat

- Subtract nutrient credits
 - Soybeans = 10 lbs N/acre
 - Alfalfa = 30 lbs N/acre (≥5 plants/sq ft.)
 - = 10 lbs N/acre (2-4 plants/sq ft.)
- Excessive N applications can reduce yields through delayed maturity and lodging
- Apply some N and P before planting and the remainder in late winter or early spring.

Recent investigations

Nitrogen Rates and Application Timing for Winter Wheat

N rates for wheat – Boerboom and Gaska, 2001

Arlington Ag Research Station

Patriot HRWW	Yield <u>bu/ac</u>	Gross return \$ per-acre*
60 lbs N per-acre	62.2	165.38
120 lbs N per-acre	67.4	165.46

^{*}N cost = \$.25/lb; Wheat price = \$2.90/bu.

N rates for wheat – Boerboom and Gaska, 2002

Arlington Ag Research Station

Patriot HRWW

Pioneer 25R57 SRWW

Kaltenberg KW39 SRWW

	Yield (bu/acre)
60 lbs N per-acre	95.4
120 lbs N per-acre	92.6

N rates for Wheat – Bundy and Andraski, 2001

N rates compared in 21 trials 1996 – 1999

<u>lbs> N per-acre</u>

Arlington 0, 30, 60, 90, 120

Lancaster

Racine 0, 30, 60, 90, 120, 150, 180

Chilton

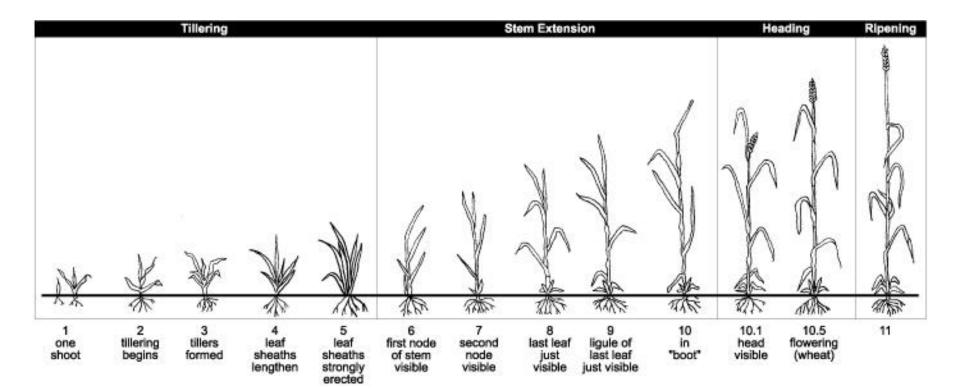
Rec N rates = 60 lbs/ac for all sites except Chilton = 80 lbs/ac.

Previous crops = Corn silage (15), winter wheat (2), cabbage (2), Oats (1), Soybeans (1)

Varieties planted: Kaskaskia, Pioneer 25R26, Cardinal, Dynasty

N rates for Wheat – Bundy and Andraski, 2001

- Wheat yields @ economic optimum N rates (EONR) ranged from 43 – 86 Bu/ac.
- EONR ranged from 0 to 150 lbs N/ac.
 - 9 sites had EONR higher than recommendations
 - Ave = 16 lbs N/ac higher for soils ≥2% OM
 - Ave = 45 lbs N/ac higher for soils <2% OM
 - 12 sites had EONR lower than the recommendation


N rates for Wheat – Bundy and Andraski, 2001

- Yields were lower with high N rates compared to 0 lbs N/acre for 8/12 trials
 - Increased lodging and lower grain test weight
 - Excessive N resulting from fertilizer additions on soils with high residual NO³-N
- Yields increased as soil NO³⁻-N plus fertilizer
 N went from 10 to 150 lbs/acre
- Yields decreased as soil NO³-N plus fertilizer
 N exceeded 150 lbs N per-acre.

Adjusting N rates for wheat with the PPNT Bundy and Andraski, 2001

- Good evidence that wheat yield response to N is strongly effected by residual soil NO³-N
- Preplant soil nitrate test (PPNT) appears to be an accurate predictor of N need.
- Current "proposed" N rate recommendations for winter wheat using the PPNT in WI where the previous crop is not alfalfa:

N Rate = Base N rec - (PPNT NO³⁻-N - 50)

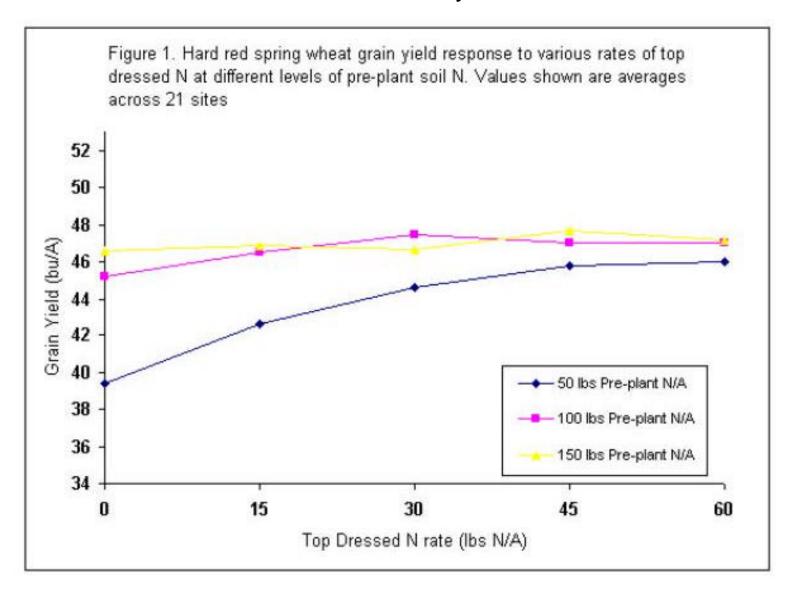
N Uptake by Winter Wheat

(Sullivan et. al., 1999)

- Field studies in Willamette Valley, OR.;
- Sampled above-ground plants through the growing season(s);
- Measured biomass accumulation and N concentration;
- N uptake = Biomass * N concentration

N Uptake by Winter Wheat

(Sullivan et. al., 1999)


- 20-40 lbs N uptake through tillering.
- Fall through early to mid-April in Wisconsin;
- Rapid N uptake during stem elongation (jointing).
 - Mid-April through early June, 2-3 lbs N/ac/day.
 - 60-100 lbs N accumulated.
 - Sufficient N availability is critical in this period;
- Thus, N should be applied during tillering, delaying a portion until onset of jointing only if early applied N losses are especially likely.

Effect of N application timing on yield (bu/acre) of winter wheat across 4 application rates (35-140 lbs/ac) Kelling, Bundy and Oplinger, 1997

	Marshfield 1986	Chilton 1987	<u>Racine 1987</u>
All fall	60	60	66
All early spring	53	58	56
2/3 ES + 1/3 LS	61	57	56
1/3 fall + 2/3 ES	58	52	56
1/4 fall + 1/2 ES + 1/4 LS	59	55	61
2/3 fall + 1/3 LS	65	61	58

Fall = preplant; ES (early spring) = at green-up; LS (late spring) = early jointing.

Weirsma, Sims and Lamb, University of Minnesota, 2002

Summary and Conclusions

- Research behind N management recommendations for winter wheat in Wisconsin is somewhat limited;
- Wheat growers tend toward higher rates than recommended;
- Rate recommendations from neighboring universities tend to be significantly higher and timing recommendations vary;
- However, recent studies suggest those very high rates could reduce yields and result in economic loss in Wisconsin;

Summary and Conclusions

- Trials needed for N management on wheat following soybeans;
- Although indications are mixed, most research and recommendations suggest that fall and/or early spring N application is best;
- PPNT has good potential for predicting optimum N rate for winter wheat.