

Sediment Loading from Maumee River Basin to Western Lake Erie

Extent of Glaciation

Influence of Drainage Class on Nutrient Losses

- Nutrient losses were higher from watersheds with more:
 - Direct Drainage
 - Pothole Drainage

Traditional Tile Risers

Ditch Spoil Blocks Flow to Drainage Ditch

Subsurface Tile & Tile Riser Flow

In our landscape, the hydrology has been short circuited. Dating back to the mid-1800's, settlers had to drain the land to break the sod.

Alternatives to Tile Risers

- Protect Lake Erie's water quality
 - Reduce <u>Sediment</u> & <u>Phosphorus</u>loads
- Must be a practice farmers will implement
 - Minimize loss of productive land
 - Allow farm traffic (don't like risers)
 - Minimal/easy maintenance
 - Approved for cost share
 - Effectively drain landscape

Rock Inlets

Rock inlets have been tested in other locales as an alternative to tile risers:

- Not very effective at decreasing contaminant loads
- Silt in with time
- Farm over them???

Rock Inlets

te inlets have en te in other ales as an a nativ tile risers:

- No. w ective at decrease g contaminant load
- Sil w 'me
- F 1 over m????

Conditions prior to runoff event of April 5, 2009

- ADE (riser)
 - No cultivation since spring 2008,
 - 100% residue cover, no disturbance
- ADW (blind Inlet)
 - No cultivation after spring 2008
 - Silage harvest, late summer 2008 (10% residue cover)
 - Disturbance on lower portion late fall (10% disturbed)

Computer simulations of April 5, 2009 event

- WEPP model runs predicted 60% more sediment loss than was collected from ADW
- Difference is probably due to the blind inlets filtering sediments prior to entering the tile system
- We are confident in this number because the model predicted same amount as was measured through the ADE tile riser with 100% corn residue

April 2010 Field Events

- ADW and ADE cropped in Oat
- Tilled early April 2010

33.5 mm precipitation
 April 25-26, 2010

Soluble P Concentrations During April 2010 Storm

Percent Reductions in Sediment and Nutrient Loads: blind inlet vs tile risers 2009 2010

% Reduction

11*

30

34% increase

66

64

52

% Reduction

79

59

24

48

72

78

Nutrient

Sediment

Nitrate-N

Soluble P

Total P

Ammonium-N

Total Kjehldahl N

Watershed Scale Assessment

- Blanketed a 300 ha monitored watershed with blind inlets
- Work with Indiana NRCS for consideration as an approved conservation practice

Total Phosphorus as a Function of Discharge Before (2009) and After (2010) Watershed Installation of Blind Inlets

Conclusions

- Distant fields with risers are directly connected to streams.
- Blind inlets reduce connectivity of contaminants
- Breaking connectivity
 appears to decrease TP
 loading to streams during
 runoff events

