# Manure Phosphorus Source and Rate Effects on Soil Test Levels and Corn Growth

Emily G. Sneller and Carrie A.M. Laboski Department of Soil Science University of Wisconsin-Madison

#### In Wisconsin...

- 60% of total P applied as manure is considered to be first year crop available
- Laboratory research has shown this is not always true
- Need to better understand soil test P
   (STP) changes with respect to P based
   manure application

### Objective

- Determine manure P availability to corn on total P applied basis as compared to fertilizer in a field setting
  - Crop growth
  - Changes in soil test P

#### Location

 University of Wisconsin Agricultural Research Stations in Arlington and Marshfield

#### Soil Characteristics

| Location   | Soil<br>Series     | рН  | Р     | K   | Ca   | Mg  | ОМ  |
|------------|--------------------|-----|-------|-----|------|-----|-----|
|            |                    |     | mg/kg |     |      | %   |     |
| Arlington  | Plano silt<br>loam | 6.5 | 17    | 77  | 1784 | 535 | 3.7 |
| Marshfield | Withee silt loam   | 7.1 | 14    | 125 | 1441 | 433 | 2.7 |

### Design

- Plots: 10 ft by 30 ft
- Randomized complete block design
- 4 repetitions
- Adapted corn hybrids



#### **Treatments**

- P sources
  - Fertilizer (0-46-0)
  - Dairy slurry
  - Solid dairy manure
  - Swine slurry
  - Poultry pellets
- Three target rates:
  - 80, 160, and
    240 lbs P<sub>2</sub>O<sub>5</sub>/a





#### Manure characteristics

| Manure                      | Total N | NH <sub>4</sub> -N | P <sub>2</sub> O <sub>5</sub> | K <sub>2</sub> O | S    | DM†  |
|-----------------------------|---------|--------------------|-------------------------------|------------------|------|------|
|                             |         |                    |                               |                  |      | %    |
| Arlington                   |         |                    |                               |                  |      |      |
| Dairy Slurry (lbs/1000 gal) | 34.3    | 14.9               | 12.0                          | 24.2             | 1.64 | 10.3 |
| Dairy Solid (lbs/ton)       | 10.8    | 3.9                | 3.7                           | 7.4              | 0.59 | 18.9 |
| Swine Slurry (lbs/1000 gal) | 22.9    | 17.6               | 11.4                          | 13.7             | 1.08 | 2.7  |
| Poultry Pellets (lbs/ton)   | 70.6    | 8.8                | 77.1                          | 51.2             | 3.85 | 84.0 |
| Marshfield                  |         |                    |                               |                  |      |      |
| Dairy Slurry (lbs/1000 gal) | 20.2    | 10.2               | 8.8                           | 19.0             | 1.34 | 6.1  |
| Dairy Solid (lbs/ton)       | 9.5     | 2.7                | 3.8                           | 12.6             | 2.68 | 19.9 |
| Swine Slurry (lbs/1000 gal) | 25.2    | 17.6               | 10.7                          | 12.5             | 1.02 | 2.8  |
| †DM, Dry Matter             |         |                    |                               |                  |      |      |

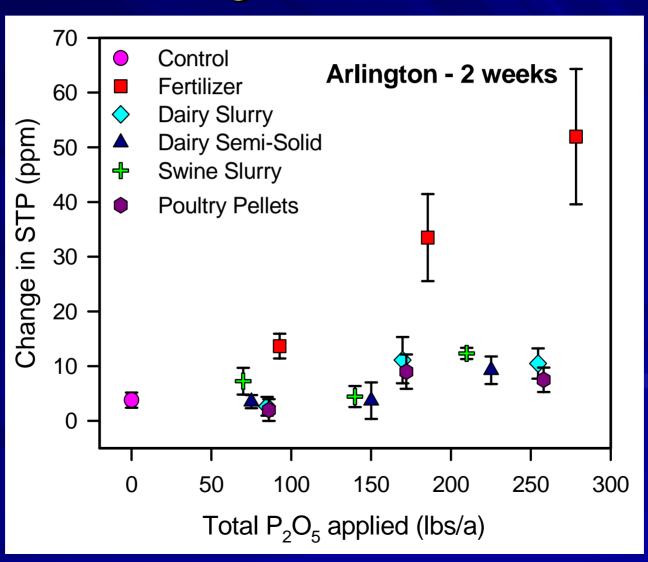
# Actual P application

|                 | Phosphorus Application Rate            |        |      |  |  |
|-----------------|----------------------------------------|--------|------|--|--|
| Source          | Low                                    | Medium | High |  |  |
|                 | —————————————————————————————————————— |        |      |  |  |
| Arlington       |                                        |        |      |  |  |
| Fertilizer      | 83                                     | 166    | 248  |  |  |
| Dairy Slurry    | 76                                     | 151    | 227  |  |  |
| Dairy Solid     | 67                                     | 134    | 201  |  |  |
| Swine Slurry    | 62                                     | 125    | 187  |  |  |
| Poultry Pellets | 77                                     | 154    | 230  |  |  |
| Marshfield      |                                        |        |      |  |  |
| Fertilizer      | 83                                     | 166    | 248  |  |  |
| Dairy Slurry    | 57                                     | 114    | 171  |  |  |
| Dairy Solid     | 68                                     | 137    | 205  |  |  |
| Swine Slurry    | 59                                     | 117    | 176  |  |  |

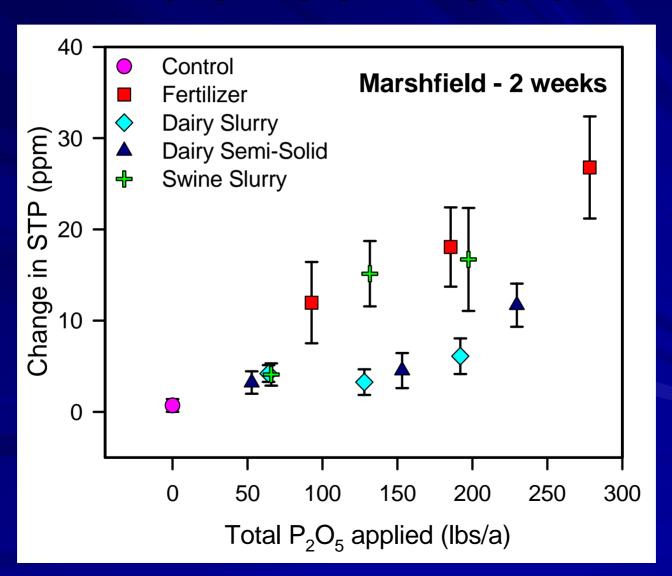
#### Other nutrients

- Manure credits were taken
- Fertilizer applied to achieve rates of:
  - 200 lbs N/a
  - 120 lbs K<sub>2</sub>O/a
  - 15 lbs S/a

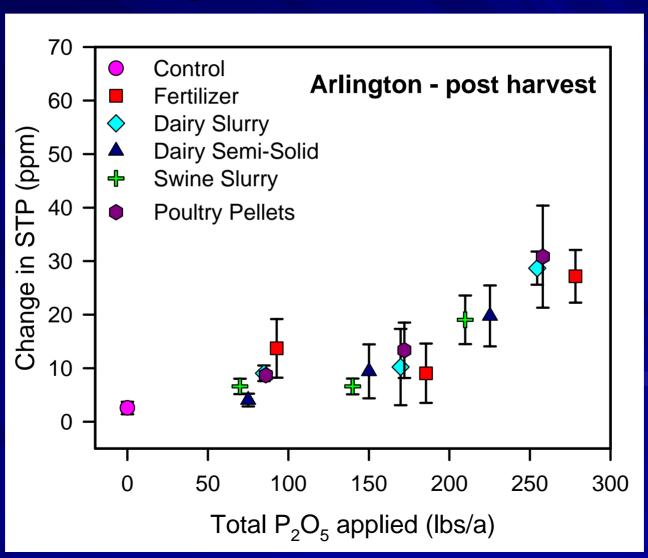
# Soil Sampling


- 0-2, 0-6, and 6-12 in samples
  - Pre-application, 2, 4, 10 weeks, and post harvest
- P extracted with Bray-1 and deionized water

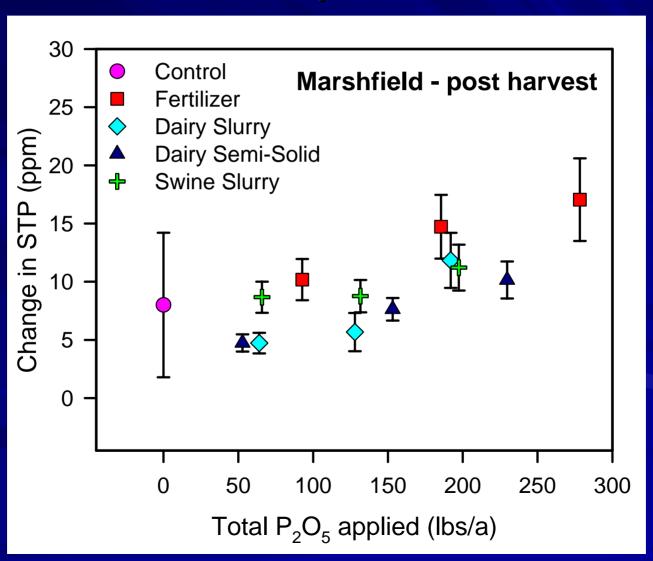
# Plant Sampling


- Whole plant samples
  - V6 growth stage, physiological maturity for silage
- Ear leaf samples at tasseling
- Grain samples at harvest
- Total P measured

### 2005 results


# Change in STP with P application: Arlington 2 weeks




# Change in STP with P application: Marshfield 2 weeks

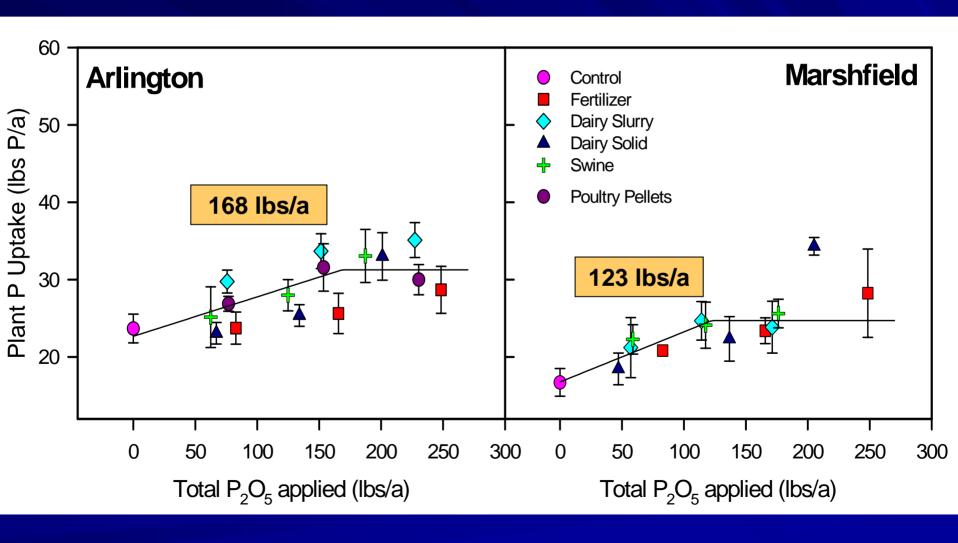


# Change in STP with P application: Arlington post harvest



# Change in STP with P application: Marshfield post harvest




# Relative availability (RA) of manure P compared to fertilizer at 2 weeks

| Source          | RA                 |
|-----------------|--------------------|
| Arlington       |                    |
| Dairy slurry    | 0.22***            |
| Dairy solid     | 0.19***            |
| Swine slurry    | 0.16***            |
| Poultry pellets | 0.18***            |
| Marshfield      |                    |
| Dairy slurry    | 0.19**             |
| Dairy solid     | 0.58*              |
| Swine slurry    | 1.20 <sup>NS</sup> |
|                 |                    |

- Post harvest
  - RA: not significantly different than fertilizer

NS = not significant, \*Significant at 0.1, \*\*Significant at 0.05, \*\*\*Significant at 0.001

### Silage P Uptake



### Silage yield at Marshfield



#### Conclusions

- Change in STP varied by soil, manure type, and sampling date
- No significant manure source effect on silage P uptake and yield
- Manure and fertilizer are equivalent P sources
  - In terms of P availability to crop growth

#### Conclusions

- Treating all manures the same may not be the most effective way to account for manure P
- Manure effects on STP more important for environmental concerns rather than crop response

#### Questions?



Hatch grant

The "Poo" Crew