

Glyphosate-Resistant Crops

- Benefits
 - Highly effective weed management
 - Favorable herbicide characteristics
 - Environmental
 - Toxicological
 - Simplified weed management
- Risks
 - Less emphasis on integrated weed management
 - Changes in weed community composition
 - Selection for glyphosate-resistant weeds

Potential Problem Weed Species

• Broadleaf weeds

– Velvetleaf:

- Giant ragweed:

- Amaranthus species:

Eastern black nightshade:

Common lambsquarters:

difficult to control

difficult to control, extended emergence

variable sensitivity, late emergence

late emergence, less sensitive

variable sensitivity

Grass weeds

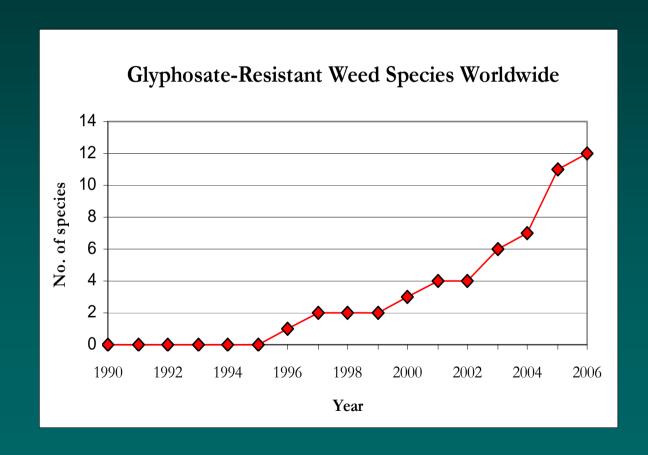
- Giant foxtail:

- Shattercane:

Large crabgrass:

- Fall panicum:

extended emergence period?


late emergence

late emergence

late emergence

Confirmed Cases of Glyphosate-Resistant Weeds

- Rigid ryegrass (1996)
- Goosegrass (1997)
- Horseweed (2000)
- Italian ryegrass (2001)
- Hairy fleabane (2003)
- Buckhorn plantain (2003)
- Common ragweed (2004)
- Palmer amaranth (2005)
- Common waterhemp (2005)
- Johnsongrass (2005)
- Wild Poinsettia (2005)
- Giant ragweed (2006)

Objective

- Assess long-term weed community dynamics in a corn-soybean rotation as influenced by tillage system and glyphosate use
 - Weed species, density, and biomass
 - Soil weed seedbank
 - Plant population
 - Crop yield

- Tillage systems
 - Moldboard Plow (MP)
 - Chisel Plow (CP)
 - No Tillage (NT)

Weed Management Treatments

 SOYBEAN
 CORN

 Even years (1998-2006)
 Odd years (1999-2005)

- 1. Glyphosate POST
- 2. Glyphosate POST
- 3. Glyphosate POST
- 4. Metolachlor PRE + Glyphosate POST
- 5. Glyphosate POST
- 6. Non-glyphosate herbicide program

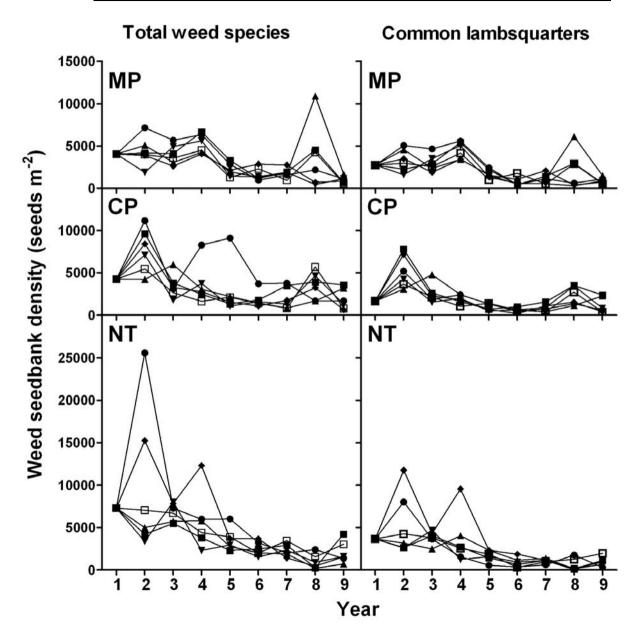
Glyphosate POST

Glyphosate POST + LPOST

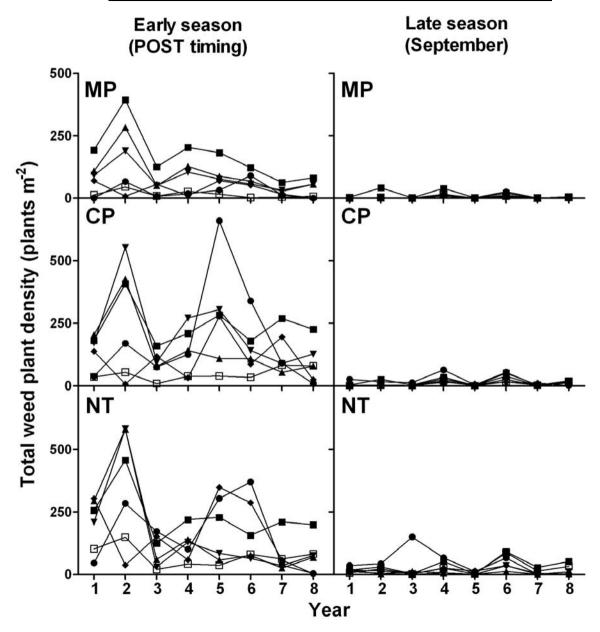
Glyphosate POST + Cultivation

Metolachlor PRE + Glyphosate POST

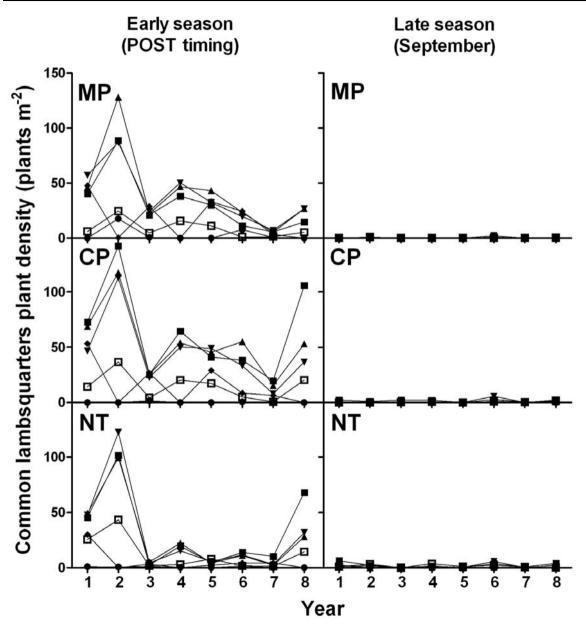
Non-glyphosate herbicide program


Non-glyphosate herbicide program

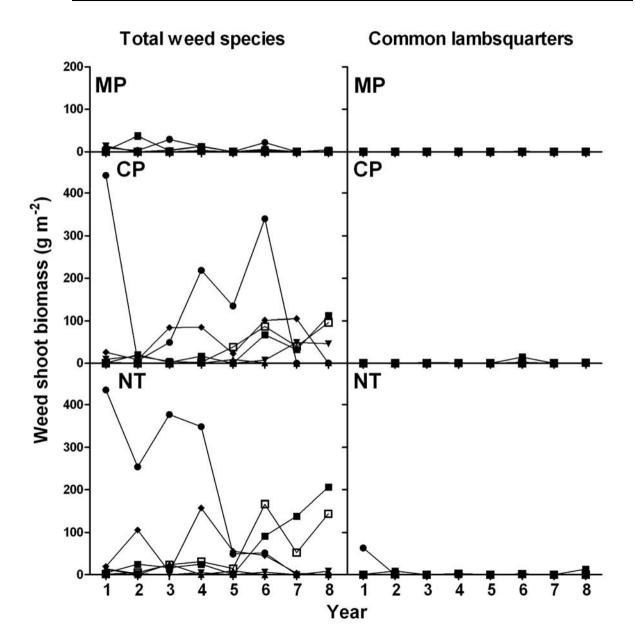
Weed Species Composition in the Soil Seedbank and Plant Population 1999-2005


	Soil Seedbank		Plant Population	
Weed Species	1999	2005	1999	2005
	——————————————————————————————————————			
Common lambsquarters	70	65	33	34
Redroot pigweed	12	11	20	6
Giant foxtail	16	11	33	29
Velvetleaf	2	2	8	2
Shattercane	0	3	1	2
Giant ragweed	0	3	0	23
Large crabgrass	0	1	0	1
Other	0	3	5	4

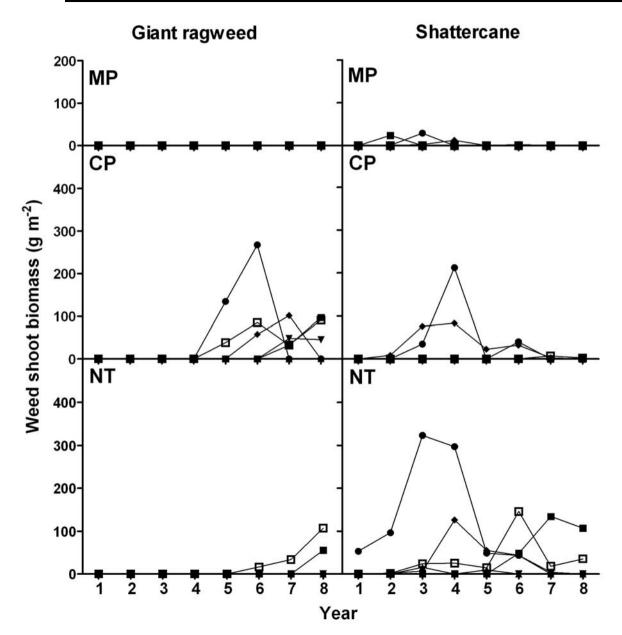
Viable Weed Seedbank Density 1998-2006


- Gly POST in soybean and corn
- ▲ Gly POST in soybean
 Gly POST + LPOST in corn
- ▼ Gly POST in soybean
 Gly POST + cultivation in corn
- ☐ Metolachlor PRE + Gly POST in soybean and corn
- ◆ Gly POST in soybean Non-glyphosate herbicides in corn
- Non-glyphosate herbicides in soybean and corn

Total Weed Plant Density 1998-2005


- Gly POST in soybean and corn
- ▲ Gly POST in soybean
 Gly POST + LPOST in corn
- ▼ Gly POST in soybean
 Gly POST + cultivation in corn
- □ Metolachlor PRE + Gly POST in soybean and corn
- ◆ Gly POST in soybean Non-glyphosate herbicides in corn
- Non-glyphosate herbicides in soybean and corn

Common Lambsquarters Plant Density 1998-2005


- Gly POST in soybean and corn
- ▲ Gly POST in soybean
 Gly POST + LPOST in corn
- ▼ Gly POST in soybean
 Gly POST + cultivation in corn
- □ Metolachlor PRE + Gly POST in soybean and corn
- ◆ Gly POST in soybean Non-glyphosate herbicides in corn
- Non-glyphosate herbicides in soybean and corn

Late-Season Weed Shoot Biomass 1998-2005

- Gly POST in soybean and corn
- ▲ Gly POST in soybean
 Gly POST + LPOST in corn
- ▼ Gly POST in soybean
 Gly POST + cultivation in corn
- □ Metolachlor PRE + Gly POST in soybean and corn
- ◆ Gly POST in soybean Non-glyphosate herbicides in corn
- Non-glyphosate herbicides in soybean and corn

Late-Season Weed Shoot Biomass 1998-2005

- Gly POST in soybean and corn
- ▲ Gly POST in soybean
 Gly POST + LPOST in corn
- ▼ Gly POST in soybean
 Gly POST + cultivation in corn
- ☐ Metolachlor PRE + Gly POST in soybean and corn
- ◆ Gly POST in soybean Non-glyphosate herbicides in corn
- Non-glyphosate herbicides in soybean and corn

Summary

- Common lambsquarters was the most abundant broadleaf species over time
 - Treatment efficacy was consistently high over eight years
 - Application conditions typically optimal for glyphosate
 - Integrated management practices
 - Viable seedbank density decreased for most treatments
- Giant ragweed and shattercane developed as difficult management problems in CP and NT
 - Developed relatively rapidly in <u>non-glyphosate herbicide</u> programs
 - Attributed to limited efficacy of specific non-glyphosate herbicides
 - Developed more slowly over time in <u>glyphosate POST</u> treatments
 - Attributed to later, extended emergence periods for both species