

Cropping Sequence and Tillage Treatments

- Cropping sequence
 - Continuous corn (CC)
 - Corn-soybean rotation (CS)
- Primary tillage system
 - Moldboard plow (MP)
 - Chisel plow (CP)
 - No-tillage (NT)

Fall Moldboard Plow

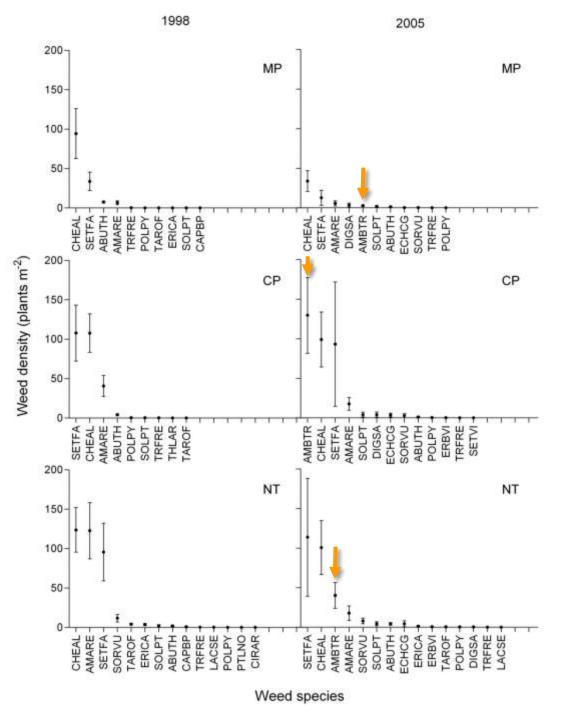
Fall Chisel Plow

Weed Management Treatments Continuous Corn

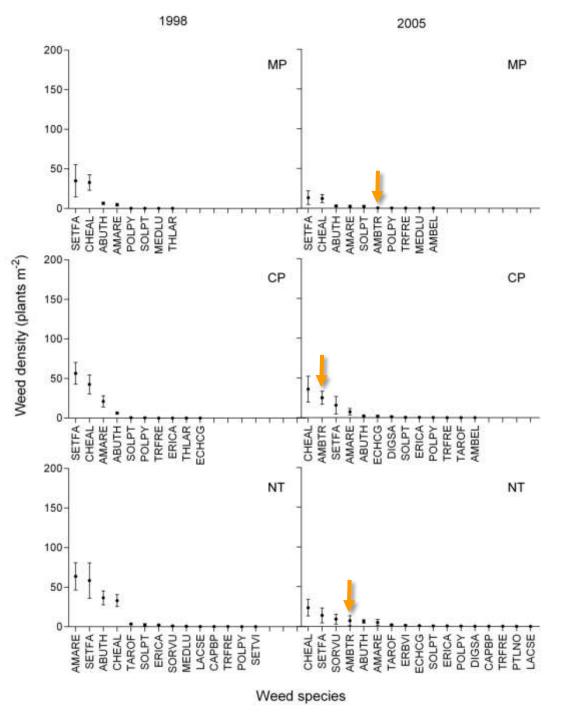
Treatment	Acronym
Glyphosate POST	GLY
Glyphosate POST and LPOST	GLY/GLY
Glyphosate POST fb inter-row cultivation	GLY/CULT
Metolachlor PRE fb glyphosate POST	PRE/GLY
Glyphosate POST rotated annually with non-glyphosate herbicides	GLY // NON-GLY
Non-glyphosate herbicides	NON-GLY

NON-GLY Herbicide Programs in Continuous Corn

Year	Herbicide program	Rate				
		kg ai ha ⁻¹				
1998–2001	S-metolachlor + atrazine + flumetsulam PRE	1.4 + 1.1 + 0.028				
2002	[clopyralid + flumetsulam + nicosulfuron +	[0.11 + 0.039 + 0.013 +				
	rimsulfuron] + atrazine POST	0.013] + 0.56				
2003	[clopyralid + flumetsulam + nicosulfuron +	[0.11 + 0.039 + 0.013 +				
	rimsulfuron] + atrazine POST /	0.013] + 0.56 /				
	nicosulfuron + [diflufenzopyr + dicamba] LPOST	0.035 + [0.056 + 0.14]				
2004–2006	[S-metolachlor + atrazine + mesotrione] PRE /	[2.25 + 0.84 + 0.23] /				
	nicosulfuron + [dicamba + diflufenzopyr] POST	0.035 + [0.14 + 0.056]				
2007	S-metolachlor + simazine + mesotrione PRE	2.25 + 0.84 + 0.23				
2008–2009	[S-metolachlor + atrazine + mesotrione] PRE /	[2.25 + 0.84 + 0.23] /				
	nicosulfuron + [dicamba + diflufenzopyr] POST	0.035 + [0.14 + 0.056]				


Weed Management Treatments Corn-Soybean Rotation

Corn Treatment (odd years)	Soybean Treatment (even years)	Acronym
Glyphosate POST	Glyphosate POST	GLY
Glyphosate POST and LPOST	Glyphosate POST	GLY/GLY
Glyphosate POST fb inter-row cultivation	Glyphosate POST	GLY/CULT
Metolachlor PRE fb glyphosate POST	Metolachlor PRE fb glyphosate POST	PRE/GLY
Glyphosate POST	Non-glyphosate herbicides	GLY // NON-GLY
Non-glyphosate herbicides	Non-glyphosate herbicides	NON-GLY

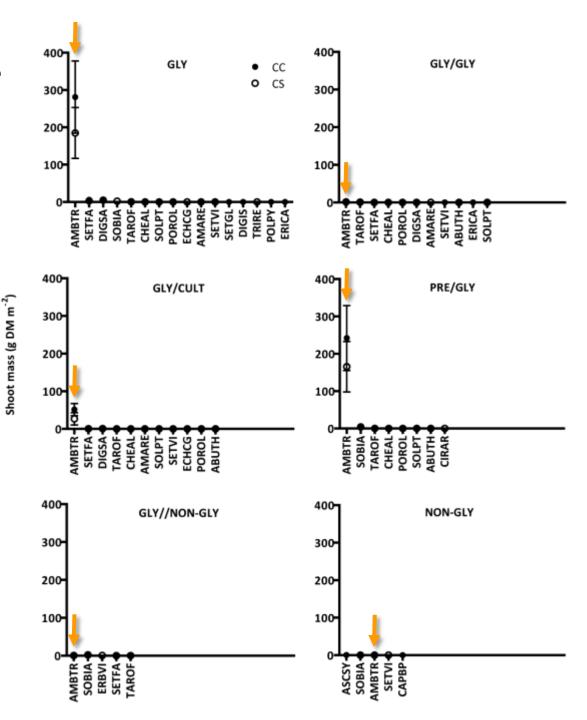

Weed Species Abundance in Continuous Corn (1998-2005)

- Abundance based on earlyseason weed plant densities
- Weed communities tended to be dominated by a few highly abundant weed species
- Common lambsquarters (CHEAL), giant foxtail (SETFA), and redroot pigweed (AMARE) were abundant across cropping sequence and tillage treatments over 8 yr
- Giant ragweed (AMBTR) not observed in 1998, but abundant in CP and NT after 8 yr

Weed Species Abundance in Corn-Soybean Rotation (1998-2005)

- Early-season plant densities typically lower in CS than CC
- Common lambsquarters and giant foxtail were abundant weed species across treatments and time
- Giant ragweed more abundant in CP than MP or NT after 8 yr

Late-Season Weed Shoot Mass as Affected by Crop Rotation and Weed Management over 12 Years


		Weed shoot mass (g DM m ⁻²)									
Crop Rotation	Weed Management	1998	1999	2000	2001	2002	2003	2004	2005	2009	Linear regression
СС	GLY	7	13	6	34	59	131	54	146	100 A [†]	* ‡
	GLY/GLY	2	<1	1	2	2	5	1	2	1 E	NS
	GLY/CULT	5	3	8	4	8	36	36	49	22 ABCD	NS
	PRE/GLY	1	3	5	18	21	36	34	74	70 AB	*
	GLY//NON-GLY	4	6	6	30	198	225	129	4	1 E	NS
	NON-GLY	7	8	8	231	132	182	1	<1	<1 E	NS
CS	GLY	2	22	2	15	<1	26	6	34	55 AB	*
	GLY/GLY	2	<1	1	1	2	<1	<1	<1	2 CDE	NS
	GLY/CULT	6	1	1	2	<1	3	1	3	7 BCDE	NS
	PRE/GLY	<1	1	1	4	2	8	6	16	25 ABC	*
	GLY//NON-GLY	5	6	4	20	2	13	4	<1	1 E	NS
	NON-GLY	88	14	3	33	6	43	<1	<1	<1 E	*

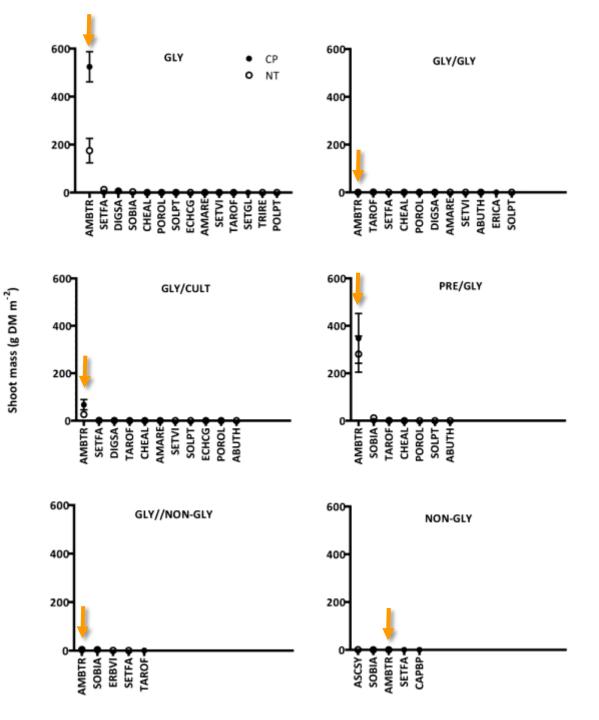
[†] Means followed by the same letter do not differ at P < 0.05 using Tukey's HSD

[‡] An asterisk indicates regression significant at P < 0.05; NS indicates not significant

Weed Species Abundance in Continuous Corn (CC) and Corn-Soybean Rotation (CS) in 2009

- Abundance based on lateseason shoot mass
- AMBTR abundance similar between CC and CS
- AMBTR the most abundant species in most weed management treatments
- AMBTR abundance greatest in GLY and PRE/GLY treatments

Late-Season Weed Shoot Mass as Affected by Tillage System and Weed Management over 12 Years


		Weed shoot mass (g DM m ⁻²)										
Tillage System	Weed Management	1998	1999	2000	2001	2002	2003	2004	2005	20	09	Linear regression
MP	GLY	1	10	1	8	2	11	2	12	4	CD [†]	NS [‡]
	GLY/GLY	<1	<1	<1	1	<1	2	<1	<1	<1	D	NS
	GLY/CULT	2	<1	1	1	<1	2	<1	1	2	CD	NS
	PRE/GLY	<1	0	<1	3	1	1	<1	2	1	D	NS
	GLY//NON-GLY	1	1	1	3	4	13	3	<1	<1	D	NS
	NON-GLY	1	1	6	14	6	27	<1	<1	<1	D	NS
СР	GLY	2	15	2	24	7	130	45	132	513	Α	*
	GLY/GLY	2	<1	1	2	2	2	<1	2	2	CD	NS
	GLY/CULT	6	2	3	1	2	16	67	36	48	ABC	*
	PRE/GLY	<1	1	1	6	9	41	52	121	157	AB	*
	GLY//NON-GLY	5	2	7	24	48	200	164	2	<1	D	NS
	NON-GLY	60	8	101	175	99	306	<1	<1	<1	D	*
NT	GLY	16	31	11	59	25	137	60	216	180	AB	*
	GLY/GLY	7	1	2	1	6	2	1	2	1	CD	NS
	GLY/CULT	10	6	4	13	8	33	6	27	19	BCD	NS
	PRE/GLY	2	6	12	37	30	96	64	138	261	AB	*
	GLY//NON-GLY	9	76	11	152	63	64	25	3	5	CD	NS
	NON-GLY	126	90	201	266	43	83	1	<1	1	D	*

[†] Means followed by the same letter within year do not differ at P < 0.05 using Tukey's HSD

 $^{^{\}scriptsize t}$ NS indicates not significant; an asterisk indicates regression parameters significant at P < 0.05

Weed Species Abundance in Chisel Plow (CP) and No-Tillage (NT) Systems in 2009

- AMBTR abundance greater in CP than NT for GLY treatment
- AMBTR the most abundant species in most weed management treatments
- AMBTR abundance greatest in GLY and PRE/GLY treatments

Correlation Between Crop Grain Yield and Late-Season Weed Shoot Mass (1998-2005)

			Late-season weed shoot mass						
Cropping Sequence	Crop phase	Tillage	Total weeds	Giant ragweed	Lambs- quarters	Redroot pigweed	Giant foxtail	Shattercane	
СС	Corn	MP	-0.41***	-0.36***	-0.24**	-0.04	-0.17*	-0.08	
		СР	-0.77***	-0.73***	-0.28***	-0.15	-0.05	-0.24**	
		NT	-0.73***	-0.27**	-0.18*	0.06	-0.16	-0.63***	
CS	Corn	MP	-0.05	-0.01	-0.14	0.03	-0.04	0.02	
		СР	-0.76***	-0.57***	-0.14	0.02	-0.22	-0.50***	
		NT	-0.89***	-0.26*	0.08	0.03	-0.12	-0.81***	
	Soybean	MP	-0.01	_	-0.04	0.11	0.11	-0.10	
		СР	-0.61***	-0.18	-0.07	-0.40***	-0.55***	-0.11	
		NT	-0.65***	-0.06	-0.28*	0.13	-0.31**	-0.56***	

Asterisks indicate correlation at α = 0.05 (*), α = 0.01 (**), and α = 0.001 (***)

Summary

- Crop rotation, tillage system, and weed management interacted to affect weed communities over time
 - Increased total weed shoot mass over time was largely due to giant ragweed
- Weed abundance was similar between CC and CS after 12 years
 - Abundance increased over time in:
 - Glyphosate POST
 - Metolachlor PRE fb glyphosate POST
 - But fewer instances of high densities and crop yield loss in CS than CC
- Weed abundance was affected greatly by tillage system
 - In MP, weed abundance was very low over time in all weed management treatments
 - In both CP and NT, weed abundance increased over time in:
 - Glyphosate POST
 - Metolachlor PRE fb glyphosate POST
 - Greatest crop yield losses were in continuous corn CP

Conclusions

- Effective long-term weed suppression by glyphosate and other herbicide modes of action was dependent on specific management tactics
 - Tactics that targeted later emerging plants
 - Glyphosate or other herbicide modes of action
 - Inter-row cultivation
 - Resistance management tactics
- Giant ragweed affinity for chisel plow systems may be due to several factors
 - A greater proportion of seeds at optimal soil depths for germination and emergence
 - Longer viability of seeds in the soil
 - Less post-harvest predation of seeds
- Dominance of giant ragweed in weed communities
 - Lower base temperature for germination
 - Lower base temperature for leaf appearance
 - Greater early-season seedling vigor
 - Seed mass
 - Shoot height
 - Leaf area distribution
 - Extended period of germination and emergence

