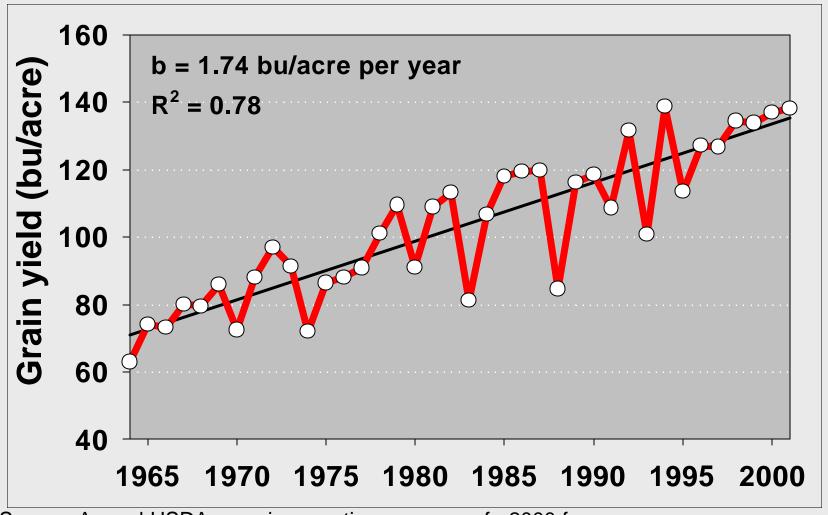
WHAT DOES IT TAKE TO GROW CORN AT ITS YIELD POTENTIAL?

Crop yield potential (Ymax)

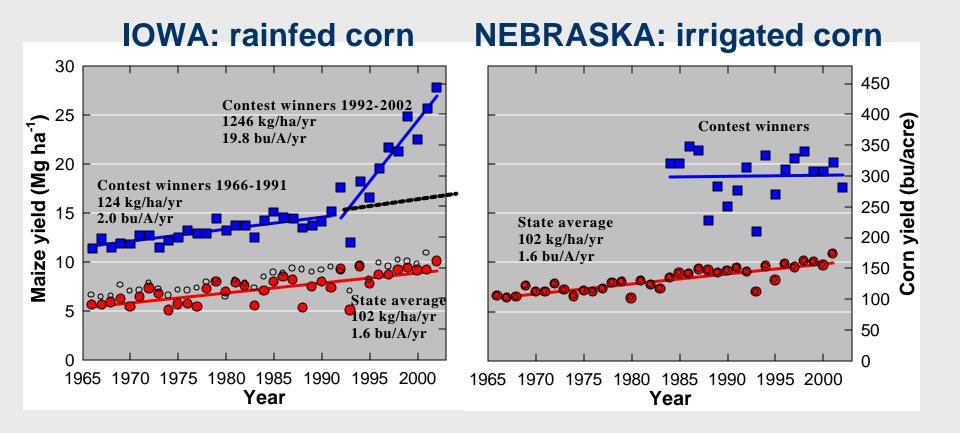
What is it?

Theoretically achievable yield solely determined by genetic characteristics and climate (solar radiation, temperature).

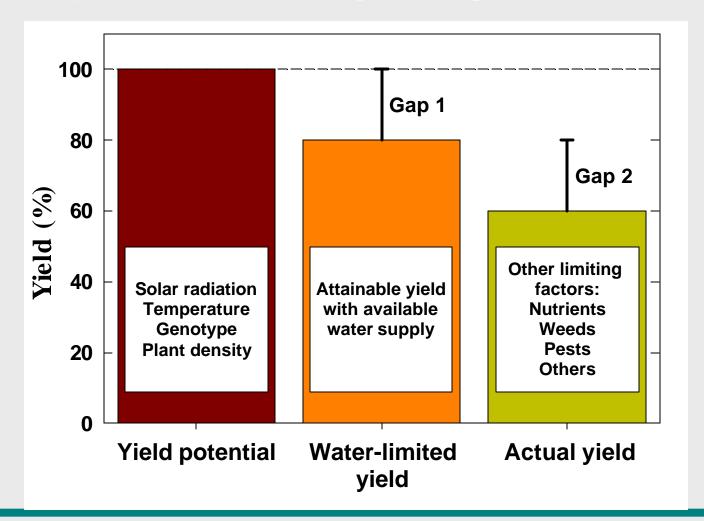

How to measure it?

- (a) Calculated from components of yield and radiation use efficiency.
- (b) Measured in fully-controlled, small-scale experiment in which all biotic and abiotic stresses (water, nutrients, pests) are eliminated.
- (b) Estimated by crop simulation models.

How to increase & utilize it?


- (a) Genetics: breeding/germplasm improvement
- (b) Management: optimization of planting date in relation to variation in Ymax that is due to the seasonal pattern of radiation and temperature
- (c) Management: minimize abiotic/biotic stresses and crop loss

U.S. Corn Yields 1964 - 2001


Source: Annual USDA cropping practices surveys of >2000 farms

Corn Yield Trends in Iowa and Nebraska

Yield potential and yield gaps

To achieve yield potential of an environment:

- Utilize the entire growing season
 (= optimal planting date and variety choice)
- Optimize plant population
- Grow the crop with minimal possible abiotic and biotic stresses (nutrients, water, pests)

Ecological Intensification of Maize-based Cropping Systems

Timothy J. Arkebauer

Kenneth G. Cassman

Rhae A. Drijber

Achim Dobermann

John L. Lindquist

John P. Markwell

Lenis A. Nelson

James E. Specht

Daniel T. Walters

Haishun Yang

Environmenal crop physiology

Crop physiology and plant nutrition

Soil microbial ecology

Soil fertility and plant nutrition

Corn ecophysiology & modeling

Biochemistry

Plant breeding and crop production

Soybean genetics

Soil fertility, C sequestration

Soil and crop modeling

1999 – 2003 funding provided by:

Foundation for Agronomic Research (PPFAR), Fluid Fertilizer Foundation Nebraska Corn Board, Nebraska Soybean Board, United Soybean Board

Ecological Intensification of Maize-based Cropping Systems

- Understand the yield potential of corn and soybean and how it is affected by management.
- Develop a scientific basis for extrapolation to other locations based on understanding of the key yield-determining processes.
- Develop practical technologies for managing systems at 80-90% of the yield potential.
- Conduct integrated assessment of productivity, profitability, input use efficiency, energy balance, and environmental consequences.

El Lincoln, NE: Treatments

Crop rotation (main plots)

CC Continuous corn

CS Corn – Soybean (corn in odd years)

SC Soybean – Corn (corn in even years)

Plant Population (subplots)

P1 Corn: 30k 28-31,000 plants/acre P2 Corn: 37k 35-41,000 plants/acre P3 Corn: 44k 38-47,000 plants/acre)

Management Intensity (sub-subplots)

M1 recommended fertilizer management based on soil testing.

Maize: UNL recommendation for 200 bu/acre yield goal

M2 intensive management aimed at yields close to yield potential.

Maize yield goal 300 bu/acre, higher NPK rates, micronutrients,

N in 3-4 splits

El Lincoln, NE: Management

Soil: Kennebec silt loam

pH 5.2-6.0, 2.5-3.0% SOM, 60-70 ppm Bray-1 P, 300-400 ppm K

<u>Lime</u>: applied in fall 1999 and fall 2001 to increase pH to about 6.0-6.5

<u>Irrigation:</u> 1999-2000 surface drip tape

2001-2002 sub-surface drip tape

2003 sprinkler

Tillage: 1999-2002 fall disk & moldboard plow, spring field cultivator/disl

fall disk & mini-moldboard plow, spring field cultivate

Hybrids: 1999-2000 Pioneer 33A14

2001-2002 Pioneer 33P67

2003 Pioneer 31N28

El Lincoln, NE: Fertilizer Program

Continuous corn (CC):

- CC M1: 170 lb N/acre (190 kg/ha), no P, no K
- CC M2: 270 lb N/acre (300 kg/ha)*,
 - 92 lb P_2O_5 /acre (45 kg P/ha) and
 - 92 lb K₂O/acre (85 kg K/ha)

Corn after soybean (CS):

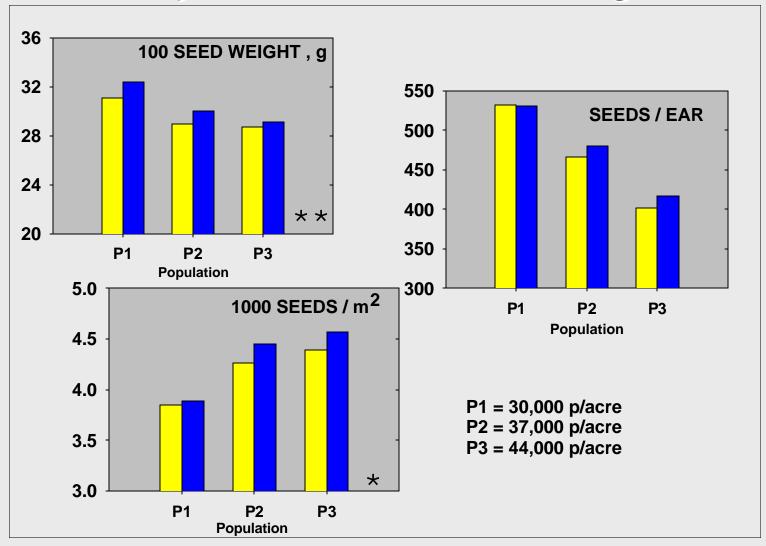
- CS M1: 116 lb N/acre (130 kg/ha), no P, no K
- CS M2: 219 lb N/acre (246 kg/ha),
 - 92 lb P_2O_5 /acre (45 kg P/ha) and
 - 92 lb K₂O/acre (85 kg K/ha)

N splitting: M1: pre-plant & V6 M2: pre-plant, V6, V10, V12-VT

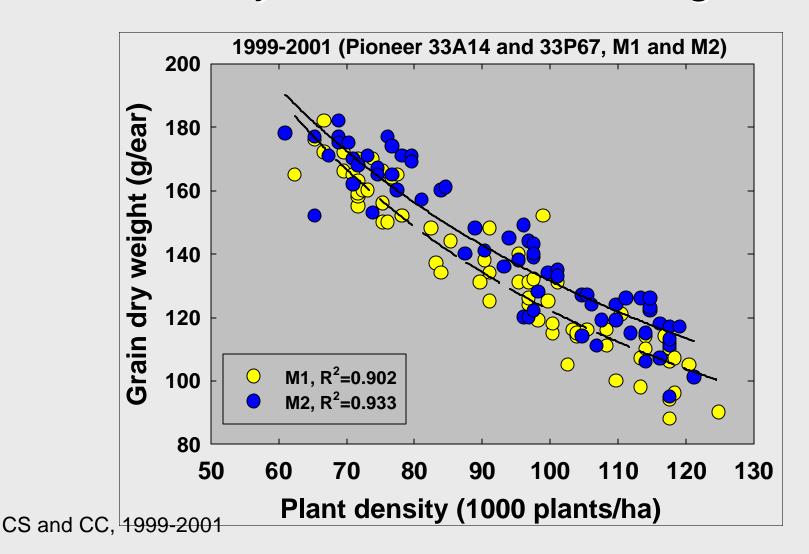
*CC-M2: includes fall application of about 45 lb N/acre as UAN (since 2001)

El Lincoln, NE: Yields

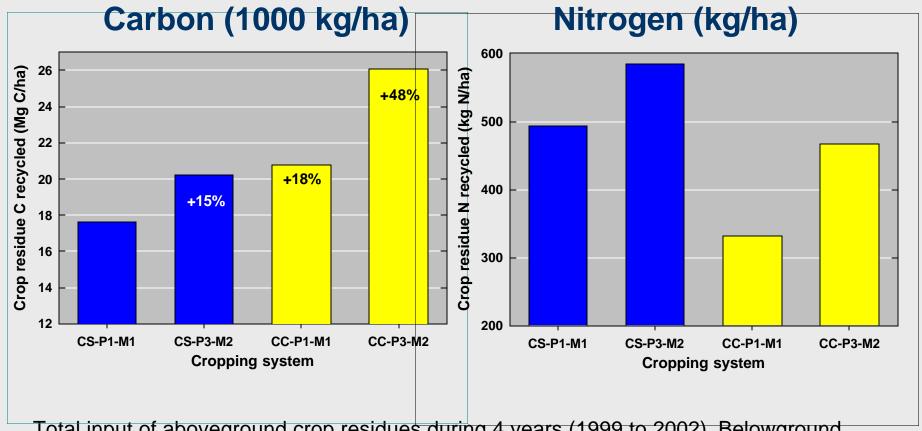
Density	y Fertili:	zer Average	Grain yield 1999-2003 (bu/acre)					
			1999	2000	2001	2002	2003	
Continuous corn								
P1	M1	217		214	223	178	255	
P2/3	M2	247		229	252	242	265	
Corn after soybean								
P1	M1	236	219	225	230	221	268	
P2/3	M2	256	257	248	249	243	285	


M2 treatment with highest-yielding plant density:

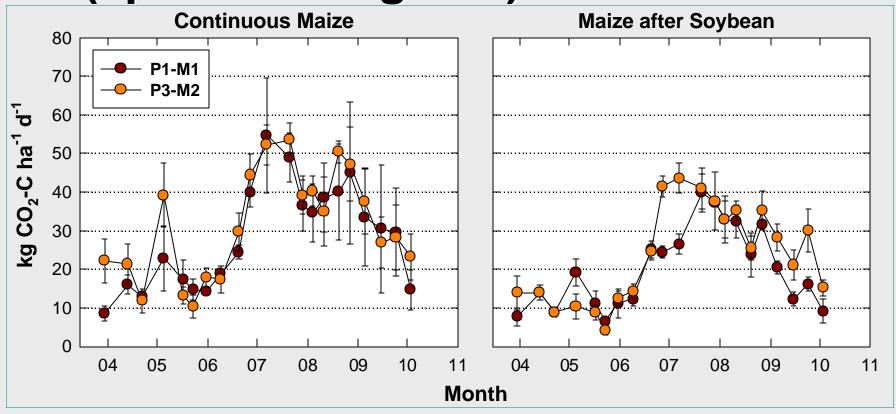
P2: 2000 and 2003


P3: 1999, 2001 and 2002

Seed Yield Components as Affected by Plant Density and Nutrient Management



Corn Grain Weight per Ear as Affected by Plant Density and Nutrient Management


Cumulative Carbon and Nitrogen Input from Crop Residues, 1999-2002

Total input of aboveground crop residues during 4 years (1999 to 2002). Belowground residues add another 15-20% of aboveground biomass inputs.

Soil CO₂ Emissions in 2003 (sprinkler irrigated)

Cumulative emission of CO₂-C during the growing season:

CC-P1-M1 5200 kg C/ha CS-P1-M1 3600 kg C/ha CC-P3-M2 5600 kg C/ha CS-P3-M2 4200 kg C/ha

El Lincoln, NE: N rates

	Average	N rate 1999-2003 (lb N/acre)					
		1999	2000	2001	2002	2003	
Continuous	corn						
M1	170		181	179	161	161	
M2	268		324	268	258	223	
Corn after se	oybean						
M1	116	116	123	116	107	116	
M2	224	201	266	214	193	223	

M1: pre-plant & V6 M2: pre-plant, V6, V10, V12-VT

M1: no adjustment made yet for increasing SOM over time

CC-M2: 2002 includes fall application of 65 lb N/acre in 2001 (UAN, on residue)

2003 includes fall application of 45 lb N/acre in 2002 (UAN, on residue)

El Lincoln, NE: N Use Efficiency

	Average 1999-2003					NUE 1999-2003				
Density	Fertilizer	N rate	Yield	NUE	1999	2000	2001	2002	2003	
		lb N/acre	bu/acre	bu/lb N			bu/lb N	1		
Contin	Continuous corn									
P1	M1	170	217	1.28	-	1.18	1.25	1.11	1.59	
P2/3	M2	268	247	0.94	-	0.71	0.94	0.94	1.18	
Corn after soybean										
P1	M1	116	236	2.04	1.89	1.83	1.98	2.06	2.31	
P2/3	M2	224	256	1.16	1.28	0.93	1.16	1.26	1.28	

Highest-yielding M2 treatment: P2: 2000 and 2003 P3: 1999, 2001 and 2002

1999-2000 surface drip tape2001-2002 sub-surface drip tape2003 sprinkler irrigation

El Lincoln, NE: Nutrient Uptake and Removal

Yield Total uptake (lb per bu yield)					Net removal with grain (lb per bu yield)					
bu/acre	Ν	P ₂ O ₅	K_2O	Mg	S	N	P_2O_5	K_2O	Mg	S
208	0.98	0.45	1.52	0.13	0.11	0.63	0.34	0.23	0.05	0.06
239	1.12	0.42	1.96	0.12	0.11	0.68	0.33	0.22	0.05	0.05
222	1.02	0.44	1.53	0.13	0.11	0.68	0.34	0.22	0.06	0.06
243	1.10	0.43	1.81	0.13	0.11	0.67	0.34	0.22	0.06	0.05
	bu/acre 208 239 222	bu/acre N 208	bu/acre N P ₂ O ₅ 208 0.98 0.45 239 1.12 0.42 222 1.02 0.44	bu/acre N P2O5 K2O 208 0.98 0.45 1.52 239 1.12 0.42 1.96 222 1.02 0.44 1.53	bu/acre N P2O5 K2O Mg 208 0.98 0.45 1.52 0.13 239 1.12 0.42 1.96 0.12 222 1.02 0.44 1.53 0.13	bu/acre N P2O5 K2O Mg S 208 0.98 0.45 1.52 0.13 0.11 239 1.12 0.42 1.96 0.12 0.11 222 1.02 0.44 1.53 0.13 0.11	bu/acre N P ₂ O ₅ K ₂ O Mg S N 208 0.98 0.45 1.52 0.13 0.11 0.63 239 1.12 0.42 1.96 0.12 0.11 0.68 222 1.02 0.44 1.53 0.13 0.11 0.68	bu/acre N P ₂ O ₅ K ₂ O Mg S N P ₂ O ₅ 208 0.98 0.45 1.52 0.13 0.11 0.63 0.34 239 1.12 0.42 1.96 0.12 0.11 0.68 0.33 222 1.02 0.44 1.53 0.13 0.11 0.68 0.34	bu/acre N P ₂ O ₅ K ₂ O Mg S N P ₂ O ₅ K ₂ O 208 0.98 0.45 1.52 0.13 0.11 0.63 0.34 0.23 239 1.12 0.42 1.96 0.12 0.11 0.68 0.33 0.22 222 1.02 0.44 1.53 0.13 0.11 0.68 0.34 0.22	bu/acre N P ₂ O ₅ K ₂ O Mg S N P ₂ O ₅ K ₂ O Mg 208 0.98 0.45 1.52 0.13 0.11 0.63 0.34 0.23 0.05 239 1.12 0.42 1.96 0.12 0.11 0.68 0.33 0.22 0.05 222 1.02 0.44 1.53 0.13 0.11 0.68 0.34 0.22 0.06

Lincoln EI: Treatment averages of 1999-2002

El Lincoln, NE: Row Spacing Study 2003

Row spacing	Target density	Actual density	Grain yield	
inches	plants/acre	plants/acre	bu/acre	
30	30000	29714	294.8	
15	30000	29297	314.3	
15	40000	37725	316.1	
15	50000	42229	301.2	

Row spacing x plant density study, Lincoln, NE, 2003

Hybrid: 31N28 (119 d)

Management: irrigated, very high nutrient rates (520 lb N, 210 P₂O₅, 210 K₂O)

Planting: 13-May Emergence: 22-May Maturity: 25-Sep

Summary 1

- Average climatic corn yield potential about 300 bu/acre for most of the Corn Belt, with an amplitude of perhaps ±30 to 70 bu/acre, depending on location and year.
- Lincoln EI study: Max. yields of 245-285 bu/acre in each year. CS-P1-M1: 236 bu with 116 lb N applied.
- Yield increased with increasing plant density, provided nutrient supply was also increased. Highest yields: 35-40k.
- Total uptake of N and K per bushel yield increased at high yield levels. Net grain nutrient removal per unit yield was not affected by management or yield level.

Summary 2

- Large amounts of crop residue C and N are returned to the soil. Amounts and proportions of C and N in residue vary widely among the cropping systems evaluated. Impact on soil C and N dynamics is likely to be significant in terms of sequestering C and N.
- Very high NUE in M1 treatments, improving over time in M2.
- Yields of at least 80% of the yield potential are achievable and profitable under production conditions, without excessive input use.

