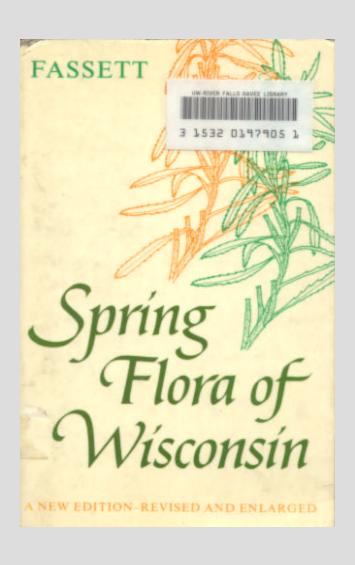
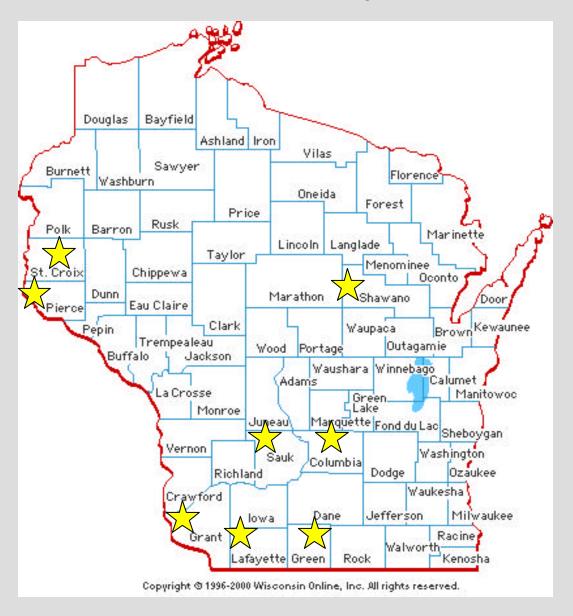
Giant Chickweed (Myosotan aquaticum) Growth and Management in Alfalfa?

Michael P. Crotser* and Scott Bollman, University of Wisconsin at River Falls



Giant Chickweed ??


- AKA
 - Water Chickweed
- Family:
 - Caryophyllaceae
- Wisconsin State Herbarium
 - Stellaria aquaticum
- USDA Plant Database
 - Myosotan aquaticum

Habitat

- Norman Fassett (1976)
 - occasional weed in moist places
 - scattered throughout the state
- Favors mowing

Distribution (Jerry Doll, 2001)

Caryophyllaceae Systematics

- Mostly perfect flowers
 - **4-5** sepals
 - **4-5** petals
 - **2-<u>5</u> styles**
 - stamens twice the number petals
- Fruit is a capsule

Giant Chickweed

- Introduced from Europe
- Simple perennial
- Angled stems
- Leaves
 - large
 - course
 - cordate-ovate

Giant Chickweed

• 1/3 inch flowers with deeply notched petals

• Pubescent, sticky stems

Roots at the nodes

Pierce County Wisconsin

Declining alfalfa stand

•Turfgrass

Growth Analysis Study Objectives

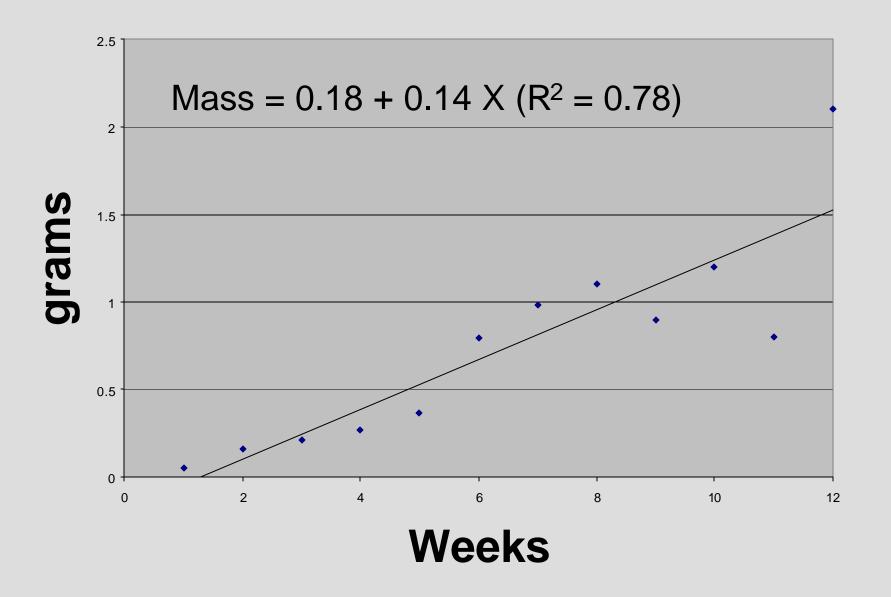
- Model giant chickweed:
 - Biomass accumulation
 - Leaf area development
 - Leaf area ratio
 - Relative growth rate

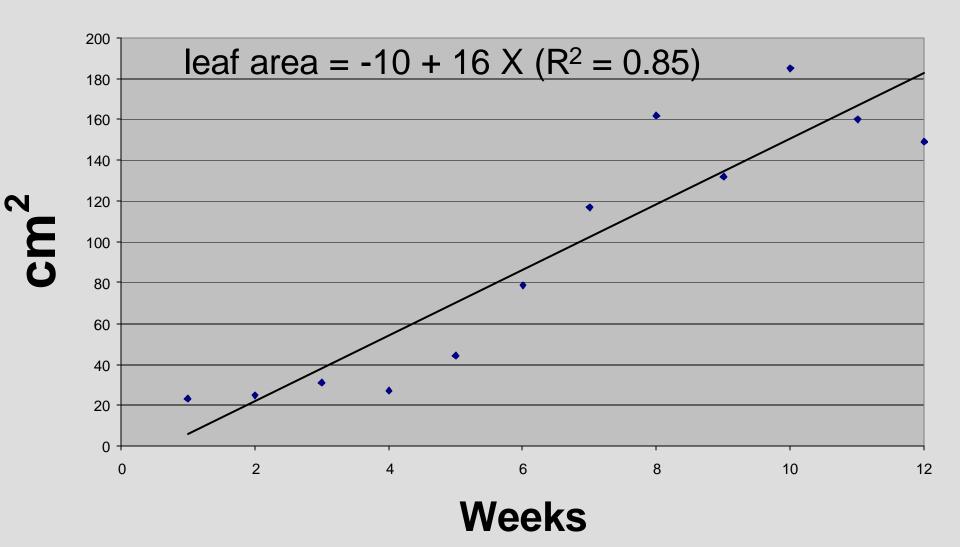
Growth Analysis Study

- UWRF Mann Valley Farm
- Split plot design w/four replications.
 - Sub-plot treatments were weeks growth
 - Whole-plot treatments were bare ground or established alfalfa.

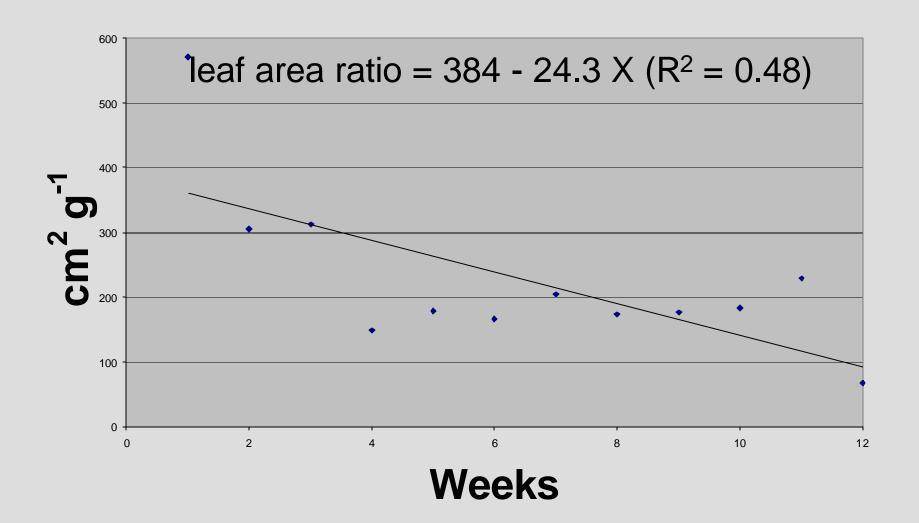
Growth Analysis Study

- G. chickweed plants were germinated and grown under greenhouse conditions
- Transplanted into the field on June 12, 2001




Growth Analysis Study

- Relative growth rates were analyzed using:
 - ANOVA procedure of SAS¹
 - means separation was conducted using Fisher's protected LSD test¹
- Leaf area, leaf area ratio, and biomass data were subjected to regression analysis¹


Giant Chickweed Mass

Giant Chickweed Leaf Area

Giant Chickweed Leaf Area Ratio

Relative growth rate (RGR) of giant chickweed (Myosotan aquaticum) as influence by week of growth¹.

Weeks after planting	g g ⁻¹ week ⁻¹
1	0.40 ab
2	0.13 bcd
3	0.10 cde
4	0.16 abcd
5	0.25 abc
6	0.13 bcd
7	0.10 bcde
8	- 0.07 de
9	0.12 bcd
10	- 0.2 e
11	0.46 a

¹Means followed by the same letter within the column are not significantly different

Growth Analysis Study Conclusions

- Biomass accumulation, leaf area, and relative growth rate of giant chickweed were similar in both environments
- Leaf area ratio decreased over time, indicating less dry matter allocation to leaf tissue late in the season

Growth Analysis Study Conclusions

- Negative relative growth rates were associated with unusually high daily average temperatures for those weeks
- Alfalfa interference does not appear to negatively impact giant chickweed growth and development

G. Chickweed Herbicide Trial

- Design:
 - RCB w/2 replications
 - 6.7' X 12' plots
- Crop:
 - Grass pasture
- Sprayer:
 - CO₂ Backpack

- Carrier:
 - 25 GPA Carrier
- Growth stage:
 - 30" chickweed
- Treated:
 - 26 July 2001

G. Chickweed Herbicide Trial

Treatments	Rate
- Check	
Ally 60 DF (metsulfuron)0.3	oz/A
- Banvel 4S (dicamba)	0.75 pt/A
- 2,4-D 3.8S	2.0 pt/A
- Dicamba (1S) + 2,4-D (2.87S)	2.0 pt/A
Pursuit 70 DF (imazethapyr)	1.44 oz/A
Sencor 75DF (metribuzin)	0.67 lb/A

G. Chickweed Herbicide Trial

•	Treatments	Control (21 DAT)
		%
	- Ally 60 DF (metsulfuron)	87
	- Banvel 4S (dicamba)	80
	- 2,4-D 3.8S	23
	- Dicamba (1S) + 2,4-D (2.87S)	30
	- Pursuit 70 DF (imazethapyr)	75
	Sencor 75DF (metribuzin)	93

Doll (2002)

A guide to managing weeds, insects, and diseases in corn, soybeans, forages, and small grains

C.M. Boerboom, J.D. Dolf, R.A. Flashinski, C.R. Grau, & J.L. Wedberg

Rating

-Metsulfuron G/E

-Tryclopyr +2,4-D G

- Glyphosate G

Where do we go from here?

- Giant v.s. other chickweeds?
- Toxicity?
- Relative Feed Value ?
- Palatability?
- Invasiveness, Competitiveness?
- Management?