Soybean aphid resistance to pyrethorid insecticides: Rethinking how we manage soybean aphid

Robert Koch

Department of Entomology

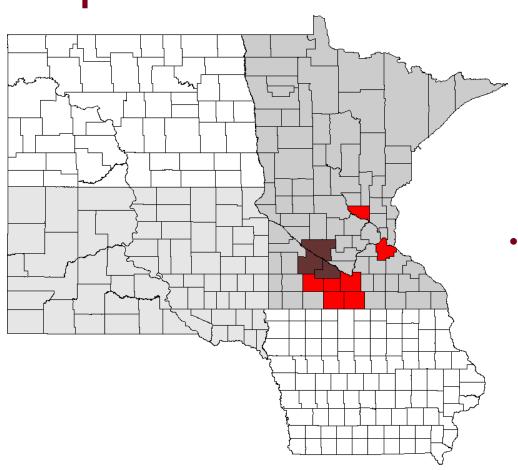
Outline

- Soybean aphid management
- Documentation of resistance
- Managing resistant populations

Resistance

 Genetically-based decrease in susceptibility to a pesticide (Tabashnik et al. 2014)

Foliar insecticides for soybean aphid

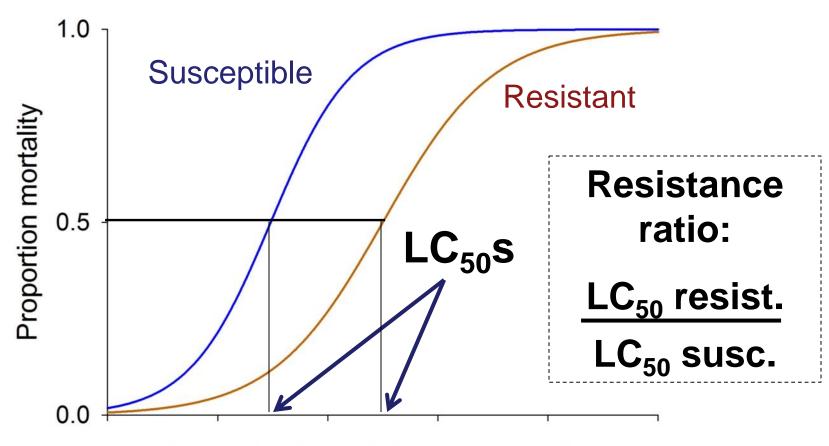

Group 1 AChE inhibitors		Group 3 Na channel modulators		Group 4 nAChR agonists	
1A	methomyl	3A :	alpha-cypermethrin	4A	acetamiprid
			beta-cyflufthrin		chlothianadin
1B	acephate		bifenthrin		imidacloprid
	chlorpyrifos	(cyfluthrin		thiamethoxam
	dimethoate	(deltamethrin		
		(esfenvalerate	4D	flupyradifurone
		,	gamma-cyhalothrin		
			lambda-cyhalothrin		
			permethrin		
		;	zeta-cypermethrin		
			pyrethrins		

Soybean aphid & resistance?

- "Light resistance" to organophosphates in China (Quin et al. 2011)
- No evidence of resistance in MI (Chandrasena et al. 2011)
- First records of resistance in North America (Hanson et al. 2017)

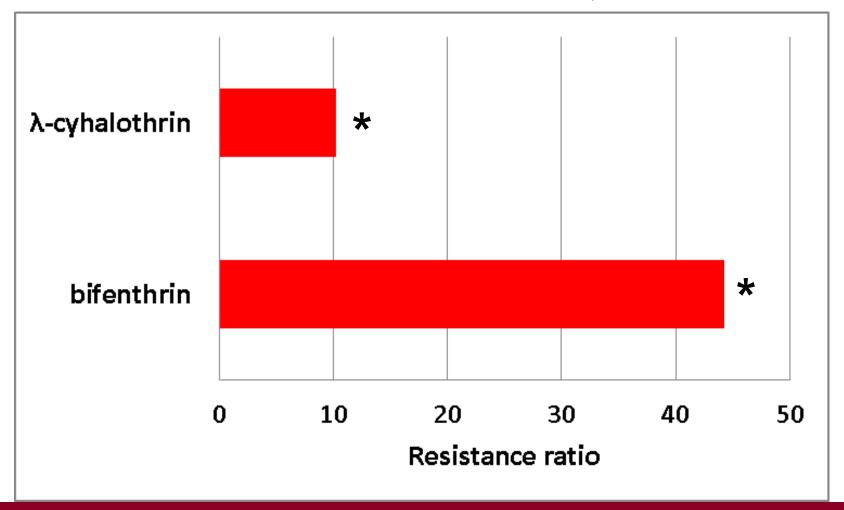
Counties with pyrethroid performance issues (2015)

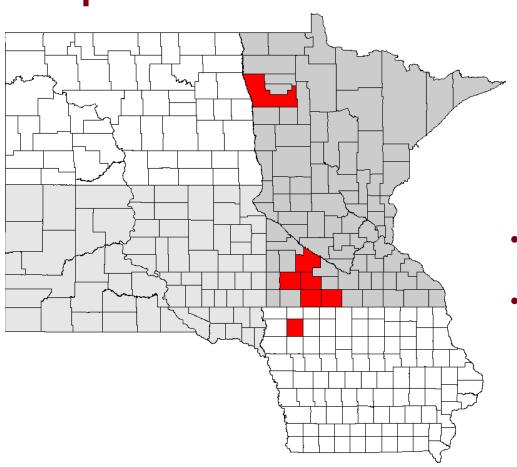
- University of Minnesota
 - Koch, Potter, MacRae, Glogoza


Map by B. Potter

Soybean aphid resistance monitoring, 2015

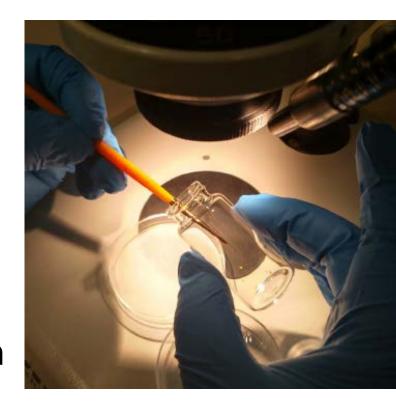
- Aphids from field with bifenthrin failure
- Glass-vial assays
 - Bifenthrin or λ-cyhalothrin
 - 10 concentrations of insecticide & untreated
 - 10 adults per vial
 - Mortality assessed after 4 h


LC₅₀ & resistance ratio

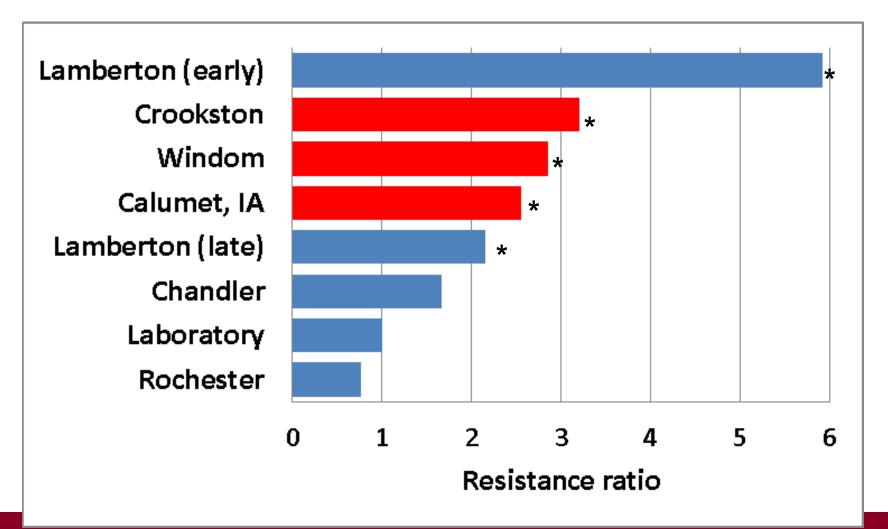

Increasing insecticide concentration

2015: Lamberton, MN

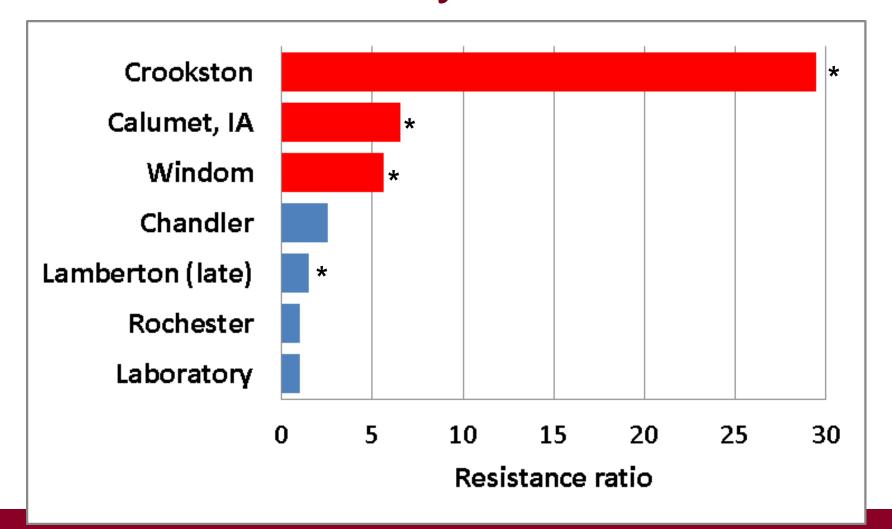
Counties with pyrethroid performance issues (2016)

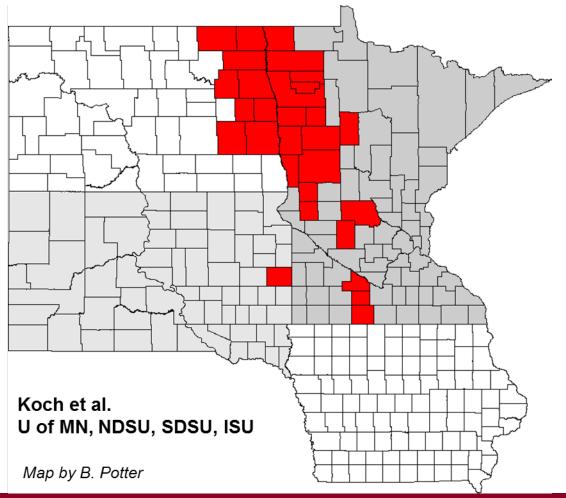


- University of Minnesota
 - Koch, Potter, MacRae, Glogoza
- Iowa State University
 - Hodgson

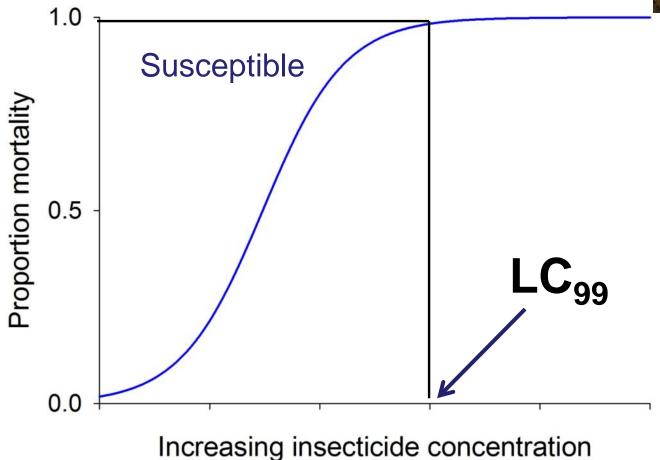

Map by B. Potter

Soybean aphid resistance monitoring, 2016

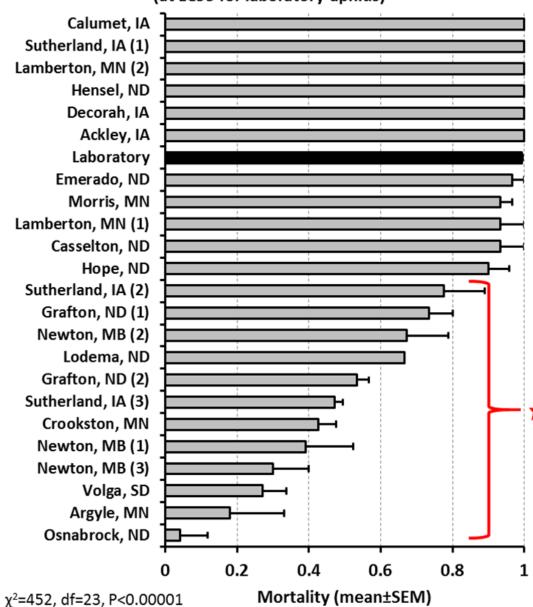

- Aphids throughout state
- Glass-vial assays
 - Bifenthrin or λ-cyhalothrin
 - 10 concentrations of insecticide & untreated
 - 10 adults per vial
 - Mortality assessed after 4 h


2016: bifenthrin

2016: λ-cyhalothrin



Counties with pyrethroid performance issues (2017)


Discriminating dose: LC₉₉

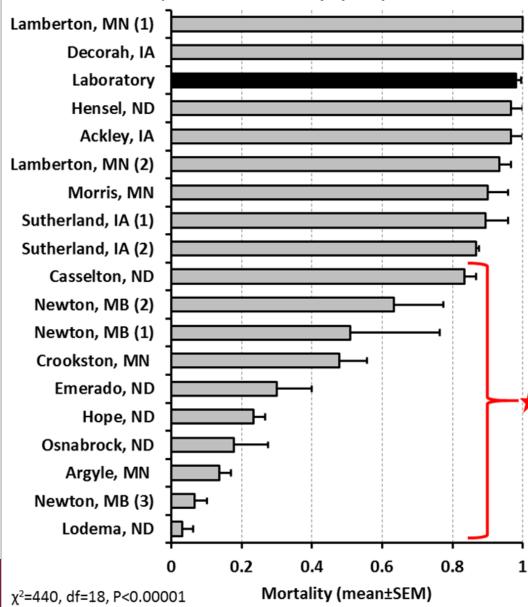


2017 λ-cyhalothrin

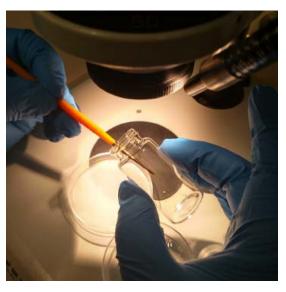
(at LC99 for laboratory aphids)

Glass-vial bioassays (2017)

Univ. of Minnesota, North Dakota State Univ., South Dakota State Univ., Iowa State Univ., & Manitoba Agriculture



University of Minnesota


Driven to Discover

2017 Bifenthrin

(at LC99 for laboratory aphids)

Glass-vial bioassays (2017)

Univ. of Minnesota, North Dakota State Univ., South Dakota State Univ., Iowa State Univ., & Manitoba Agriculture

University of Minnesota

Driven to DiscoverSM

How did we get here?

- Reliance on few insecticide groups for aphid management
- Persistent infestations in/near MN
- Treating more than needed
 - Treating fields below threshold
 - Adding insecticide when targeting weeds or pathogens ("...just in case")
 - Using low rates of insecticide

Insecticide-resistant aphids

Species	Insecticides resisted			
Green peach aphid	BPU, C, Nic, OC, OP, Py			
Cotton/melon aphid	C, OC, OP, Py			
Greenbug	OP			
Hop aphid	C, OP, Py			
Currant-lettuce aphid	C, OC, OP			
Rosy apple aphid	C, OP, Py			
Potato aphid	C, OP, Py			
Cowpea aphid	Nic, C, OP, Py	BPU: be		
Bean aphid	C, OP	C: carba Nic: nic		
Buckthorn aphid	С	OC: org		
Turnip aphid	OP, Py			
Bird cherry-oat aphid	OP Py: pyr			
Spotted alfalfa aphid	C, OP	Foster et		

BPU: benzoylphenyl ureas;

C: carbamates;

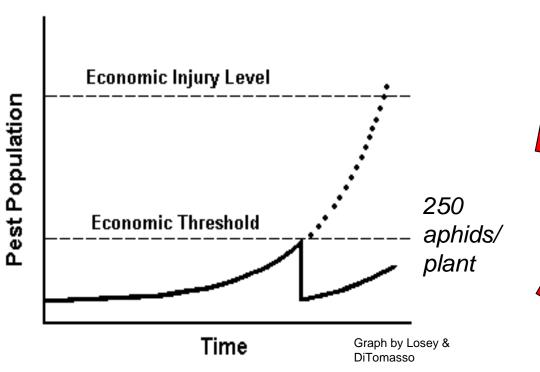
Nic: nicotine/neonics;

OC: organochlorines;

OP: organophosphates;

Py: pyrethroids

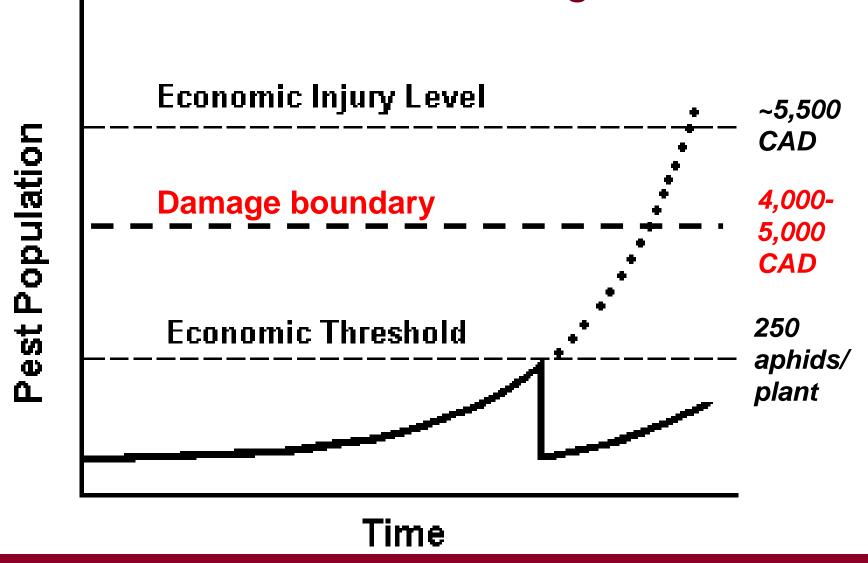
Foster et al. 2007


Now what?

Don't waste your bullets

1. Don't spray when not needed

1. Don't spray when not needed



Soybean aphid yield loss relationship

graphs from K. Tilmon

Decision making

- Rates
 - Use only labeled rates of insecticides
 - High labeled rates may be preferred

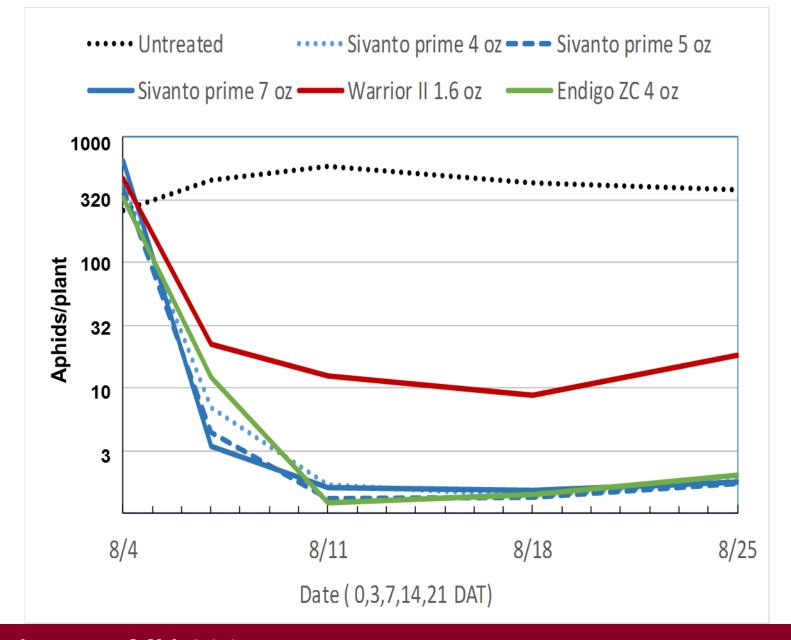
- Rates
- Nozzles, volume & pressure
 - Small droplets
 - Ground: >15 gal/ac at >30 psi
 - Air: 3-5 gal/ac

- Rates
- Nozzles, volume & pressure
- Environmental conditions
 - Avoid spraying under conditions that promote droplet or vapor drift
 - Windy, temperature inversion, etc.

- Rates
- Nozzles, volume & pressure
- Environmental conditions
- Scout field 3-5 days after spraying to check effectiveness

3. If you have a failure...

3. If you have a failure...


- Rule out other causes
 - Incorrect pesticide or rate, poor coverage
 - Unfavorable conditions during application
 - Re-colonization by pest

3. If you have a failure...

- Rule out other causes
- Alternate insecticide group for next spray
 - Group numbers are on labels

Foliar insecticides for soybean aphid

Group 1 AChE inhibitors		Group 3 Na channel modulators		Group 4 nAChR agonists	
1A	methomyl	3A	alpha-cypermethrin	4A	acetamiprid
			beta-cyflufthrin		chlothianadin
1B	acephate		bifenthrin		imidacloprid
	chlorpyrifos		cyfluthrin		thiamethoxam
	dimethoate		deltamethrin		
			esfenvalerate	4D	flupyradifurone
			gamma-cyhalothrin		
			lambda-cyhalothrin		
			permethrin		
			zeta-cypermethrin		
			pyrethrins		

Example insecticide rotations

	Initial treatment	Re-treatment
Aphids below ET		
Aphids at or above ET		
• Pyrethroid resistance not expected		
 Pyrethroid resistance suspected 		
_		
		· •

Example insecticide rotations

	Initial treatment	Re-treatment
Aphids below ET	Don't spray	
Aphids at or above ET		
 Pyrethroid resistance not expected 		
•		
 Pyrethroid resistance suspected 		

Example insecticide rotations

	Initial treatment	Re-treatment	
Aphids below ET	Don't spray		
Aphids at or above ET			
 Pyrethroid resistance not expected 	chlorpyrifos	Py, Py+NN	
	Py	chlorpyrifos, Py+NN, Py+OP	
	Py+NN	chlorpyrifos	
• Pyrethroid resistance suspected			
·			

Example insecticide rotations

	Initial treatment	Re-treatment
Aphids below ET	Don't spray	
Aphids at or above ET		
• Pyrethroid resistance not expected	chlorpyrifos	Py, Py+NN
	Py	chlorpyrifos, Py+NN, Py+OP
	Py+NN	chlorpyrifos
 Pyrethroid resistance suspected 	chlorpyrifos	Py+NN
	Py+NN	chlorpyrifos
	Pv+OP	Pv+NN, C

3. If you have a failure...

- Rule out other causes
- Alternate insecticide group for next spray
- Report to Extension

Conclusions

- Few tools (bullets) available to manage soybean aphid
- 3 years of pyrethroid failures
 & confirmed resistance
- What to do?
 - Don't spray when not needed
 - If you spray, do it right
 - If you have a failure, alternate insecticide groups

Thank you

Questions???

Robert Koch: koch0125@umn.edu

Carbamates (1A)

(e.g., Lannate, Nudrin)

- Potential benefits:
 - Rapid knockdown
 - Some translocation
 - Broad spectrum

- Potential issues:
 - Short residual
 - Variable toxicity to mammals
 - Toxic to beneficials

Organophosphates (1B)

(e.g., Lorsban, Dimethoate)

- Potential benefits:
 - Rapid knockdown
 - Inexpensive generics
 - Some translocation
 - Broad spectrum
 - Effective against spider mites

- Potential issues:
 - Variable toxicity to mammals
 - Toxic to beneficials
 - Resistant 2-spotted spider mites
 - Dimethoate less effective against soybean aphid

Pyrethroids (3A)

(e.g., Warrior, Tundra, Asana, Hero)

- Potential benefits:
 - Rapid knockdown
 - Some residual activity
 - Inexpensive generics
 - Low mammalian toxicity
 - Broad spectrum

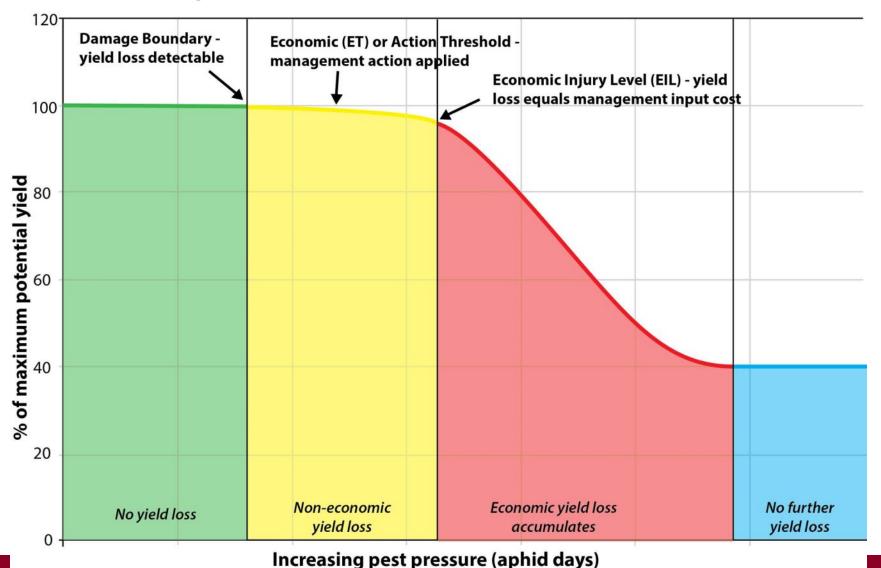
- Potential issues:
 - Resistance is developing
 - Sensitive to application technology
 - Toxic to beneficials
 - Most have potential to flare spider mites

Neonicotinoids (4A)

(e.g., Belay, Admire)

- Potential benefits:
 - Some translocation upward
 - Some residual activity
 - Very low mammalian toxicity

- Potential issues:
 - Selection pressure following seed treatment
 - Slow acting when alone
 - Potential to flare spider mites
 - Toxic to bees & some beneficials


Butenolides (4D)

(e.g., Sivanto)

- Potential benefits:
 - Some residual activity
 - Low mammalian toxicity
 - Less impact on beneficial insects

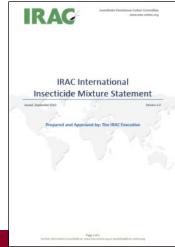
- Potential issues:
 - Cost \$\$\$
 - Lack of efficacy data against soybean aphid

Damage curve: pest population & yield

"Speed scouting"

- Tally threshold
- Pros:
 - Saves time
 - Easy to use
- Cons:
 - Less detailed
 - Overrecommends treatment

Aphid Speed Scout App (Android & Iphone/Ipad)


Blank, hard-copy worksheets:

http://www.ent.iastate.edu/dept/faculty/hodgson/files/ul/2009 Speed Scouting blank form.pdf

3. If you have a failure...

- Rule out other causes
- Alternate insecticide group for next spray
 - Mixtures: Generally less effective for
 - resistance management
 - Pest susceptibility
 - Registered rates
 - Duration of residual activity
 - Cross-resistance

Pyrethroid resistance

- General mechanisms
 - Metabolic
 - monooxygenases (cytochrome P450)
 - esterases
 - glutathione S-transferases
 - Target site insensitivity
 - knock down resistance (kdr; super-kdr)
 - Reduced cuticular penetration

Soybean aphid resistance to λ-cyhalotrhin in China

- 76-fold resistance after 40 generations of laboratory selection with λ-cyhalotrhin
- Increased esterase & cytochrome P450 expression
- Cross resistance to: chlorpyrifos, acephate, cypermethrin, esfenvalerate, cyfluthrin, carbofuran, and bifenthrin