

No-till Planter Set-up for Heavy Residue: Aftermarket Closing Wheel Assessment

Brian D. Luck, Ph.D.
Biological Systems Engineering Department

WABA Classic January, 2018

Problem Statement

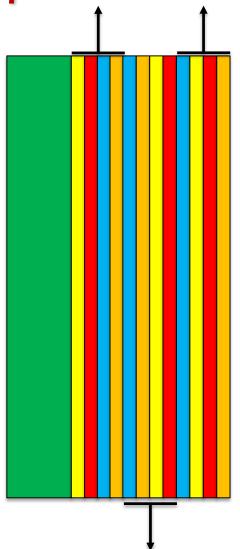
- How do we best no-till plant into heavy residue?
 - Wow! Planter components alone makes this a big study
 - Rollers vs. no rollers
 - Row cleaners vs. no row cleaners
 - Row cleaner settings
 - Just touching or slight tillage on the surface
 - Down force on the row units and seeding depth
 - Seed delivery and seed firmer vs. no seed firmer
 - Closing wheel type
 - Closing wheel down pressure

Problem Statement

- The question was also asked with cover crops in mind:
 - Standing green
 - Standing terminated
 - Rolled green
 - Rolled terminated
- Pair the question down to something reasonable:
 - What effect does closing wheel type have on plant emergence and yield when no-till planting into heavy residue?

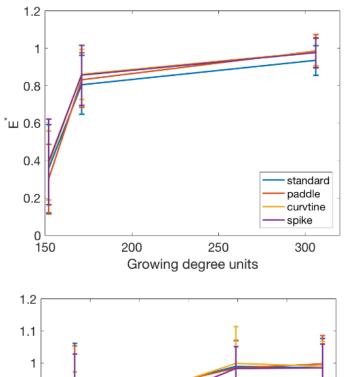
- Four site locations across WI:
 - Rock Co., Dane Co., Marathon Co., and Dunn Co.
 - Soils spanned heavy clay to sandy loam
- Four row John Deere 1700
 - Pneumatic down force
 - Hydraulic row unit drives
 - Typical MaxEmerge[™] row units
 - 3-point mounted

- Two different corn hybrids were used between the Northern and Southern sites
 - Pioneer[™] P0339AMXT (Southern 103 day)
 - Tracy Seeds T086-26-GTA (Northern 86 day)
- Seeding rate remained constant at each location
 - 36,000 Seeds/Acre
- 2" seeding depth at all locations
- Management after seeding was treated the same as the remainder of the field -> standard ag. practices
- Closing wheel down pressure assessed at each location

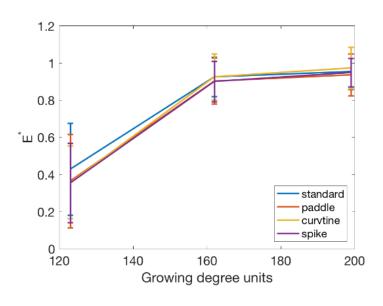


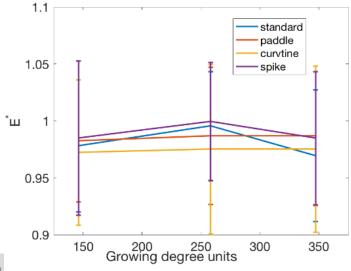
2/7/2018

- Row effects were blocked and randomized
- Each pass required removing and reinstalling the closing wheels.
- ~120 replicate passes at each location



Data Collection


- Emergence counted at each location several times
 - Based on growing degree units past planting
 - Goal was to assess emergence rate differences and final emergence of the plants
- Yield was measured to assess any differences at each location
 - Hand harvested in Dane Co.
 - Almaco plot combine used in all other locations
 - Thanks to Dr. Smith (Plant Path.) and Marshfield ARS!



Results

University of Wisconsin-Mauison

Results

- There are none @ 95% confidence interval ($\alpha = 0.05$)
- No statistical differences detected between closing wheels
- Emergence was statistically different across sites

Wheel Type	Location	Emergence	Statistical Significance
Standard	all	96%	No
			No
Yetter Paddle	all	98%	
			No
Dawn Curvtine	all	98%	
Martin Spike	all	97%	No
all	Rock Co.	97%	Yes
all	Dane Co.	95%	Yes
all	Dunn Co	99%	Yes
all	Marathon Co.	98%	Yes

Results

- Let's relax our standards a bit (typical Engi-nerd)
- Comparing emergence of all aftermarket closing wheels to the standard closing wheel (confidence interval of 90%, α = 0.10) the aftermarket closing wheels outperformed the standard closing wheel (P-value = 0.068)!
- Standard Closing Wheel Emergence of 95.6%
 - Standard Error = 0.94%
- Aftermarket Closing Wheel Emergence of 97.6%
 - Standard Error = 0.61%

Recommendations

- For this study...wait and see.
 - We are planning to repeat the study again in 2018
 - The higher the N the lower the error! (old statistical proverb)
- What are we trying to achieve?
 - Seed to soil contact, reduction in sidewall compaction, and somewhat tilled soil directly above the seed for best/easiest emergence
 - Differing soil conditions will impact performance of these closing wheels (soil moisture at planting, residue, etc.)

Recommendations

- None of the closing wheels had any trouble planting in the high residue environment
 - No-till into corn stubble Dawn Curvetine[™] occasionally picked up a corn cob
 - No wrapping or clogging with the green cover crop environment
- Spiked closing wheels were not ideal in the clay loam soils in Marathon County
 - Envision a sewing machine
- Mixing an aftermarket wheel with a standard might be the best compromise for cost and benefit (added to 2018 study)

Questions?

Brian Luck

Biological Systems Engineering

bluck@wisc.edu

@BLuck_BSE_UW

(608) 890-1861

wimachineryextension.bse.wisc.edu

Biological Systems
Engineering

UVERSITY OF WISCONSIN-MADISON