

Consider soil drainage class when making N application timing decision for corn

Carrie Laboski & Todd Andraski Wisconsin Agribusiness Classic 1/15/20

Corn N uptake

N Timing Study in Lancaster & Marshfield, 2014-2016

N Timing

- Preplant: PP
- Sidedress: SD
 - V6, ~18"
- Split: $PP_{40} + SD$
- Preplant + Late: PP + LV₄₀
 - Late = 10 d before VT
- Triple split: PP₄₀ + SD + LV₄₀

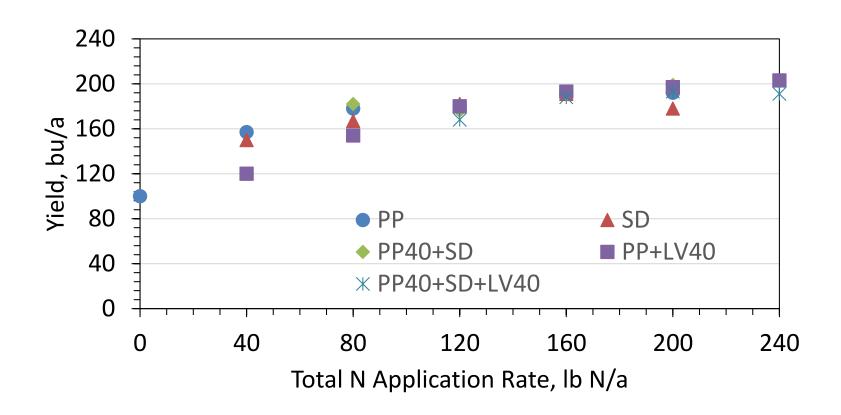
Previous crop = corn

N Sources

- Preplant: urea broadcast, incorporated
- Sidedress: UAN sub-surface band between rows
- Late: UAN with Agrotain surface band between rows

Soil Drainage

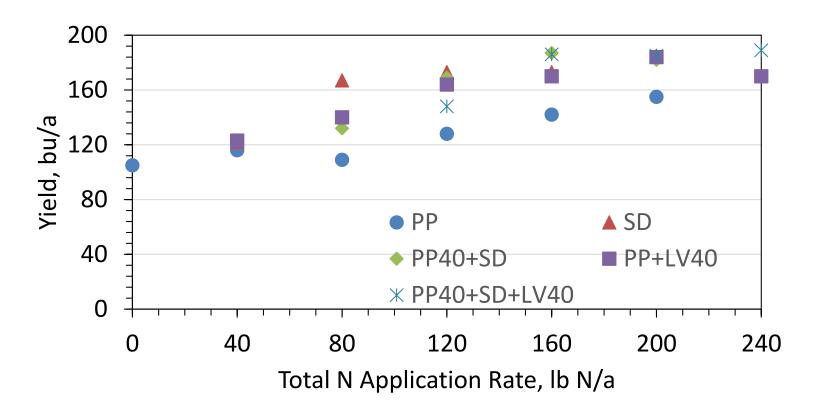
- Lancaster, well-drained
- Marshfield, somewhat poorly drained


Research funded by WI Fertilizer Research Program

Growing season precipitation

Location	Year	PP to V6	V6 to LV	2-wk following LV	PP to 2-wk following LV
		precipitation (departure from normal), inches			
Lancaster	2014	6.34 (-0.16)	3.07 (0.24)	0.08 (-1.77)	9.49 (-1.69)
	2015	8.11 (1.54)	2.36 (-1.38)	0.79 (-1.38)	11.26 (-1.22)
	2016	5.20 (0.31)	6.18 (2.17)	7.24 (5.31)	18.62 (7.79)
Marshfield	2014*	5.83 (1.89)	2.28 (-1.30)	1.46 (-0.91)	9.57 (-0.32)
	2015	8.74 (2.48)	3.07 (0.00)	2.01 (0.00)	13.82 (2.48)
	2016	5.98 (1.34)	4.06 (0.43)	2.60 (0.63)	12.64 (2.40)

^{*}slightly better drainage than other years


Lancaster, 2015

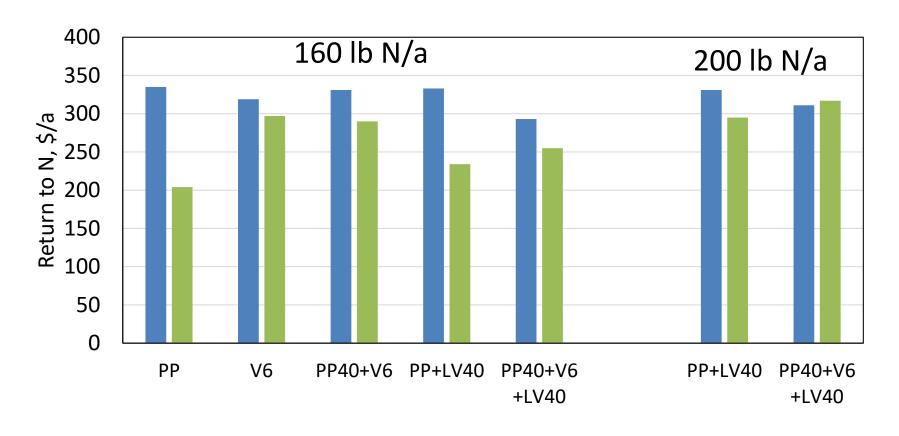
- Waiting too long to apply N, reduces yield.
- No effect of timing on well drained soil

MRTN_{0.10} = 165 lb N/a, 155-180 lb/a EONR_{0.10} = 2014: 181 lb/a, 203 bu/a 2015: 112 lb/a, 185 bu/a 2016: 162 lb/a, 219 bu/a

Marshfield, 2015

- In-season applications are preferred on somewhat poorly drained and wetter soils.
- Rescue N applications at late vegetative were effective at recouping yield from early season N loss.

 $MRTN_{0.10} = 165 \text{ lb/a}, 155-180 \text{ lb/a} (High YP)$

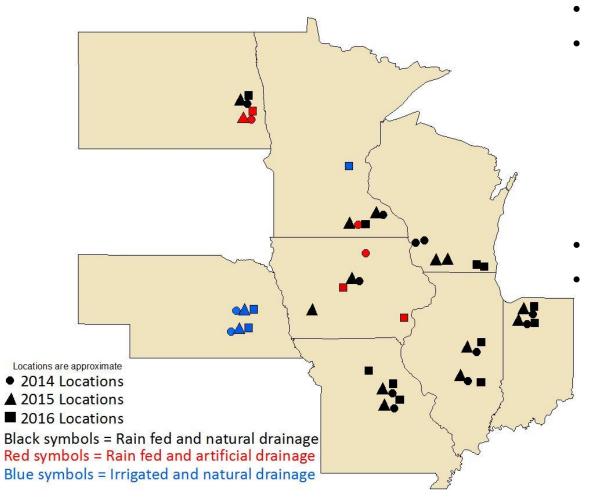

= 125 lb/a, 115-140 lb/a (Med YP)

EONR_{0.10}= 2014: 184 lb/a, 185 bu/a

2015: 109-210 lb/a, 177-151 bu/a

2016: 210 lb/a, 154-191 bu/a

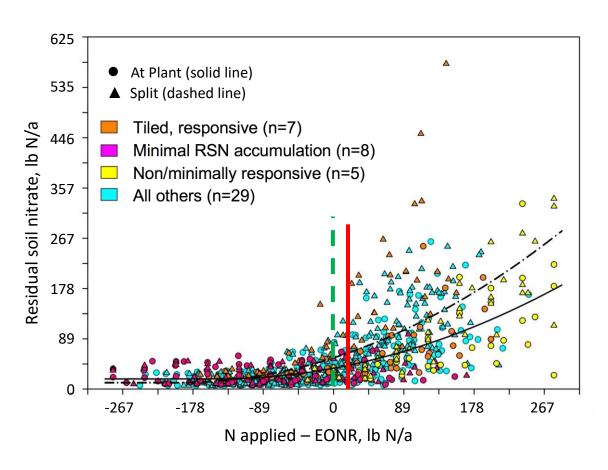
3-year average return to N



\$4/bu \$0.40/lb N \$10/a for each application >1

■ Lancaster ■ Marshfield

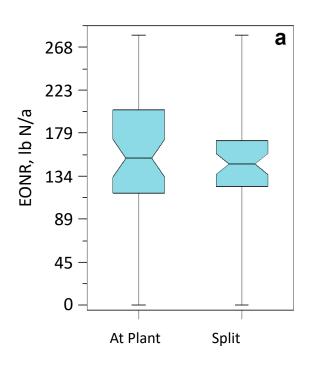
No effect of timing at Lancaster Sidedressing N paid at Marshfield

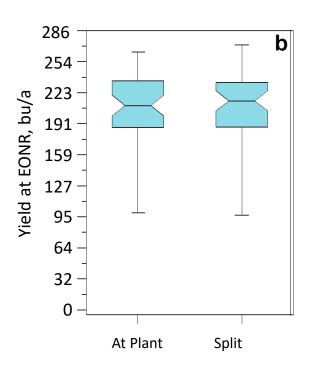

Midwestern N Timing Study, 2014-2016

- 49 site-years
- Site selection
 - Site productivity
 - Prev. crop soybean, except for 5 corn, 1 sunflower
 - No recent manure history
 - Tillage: no-till and reduced
 - Standardized protocol
 - **Treatments**
 - 0-280 lb N/a
 - At plant
 - Split = 40 lb N/a at plant + V9 sidedress

Research funded by Pioneer

Timing of N application influences timing of potential N loss

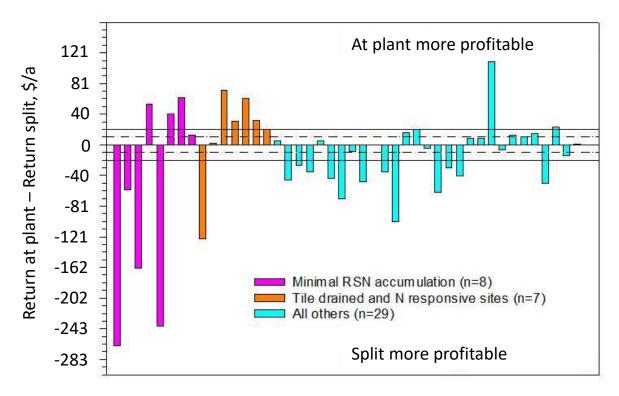



Split applications leave more N in the soil profile after harvest (55 vs 37 lb N/a at $EONR_{0.10}$) compared to at plant applications

Potential N losses at EONR_{0.10} are similar to lower N rates

EONR_{0.10} = economic optimum N rate at N:corn price ratio of 0.10 eg. \$0.30/lb N and \$3.00/bu or \$0.40/lb N and \$4.00/bu

Effect of N timing on EONR & yield



- Study average EONR:
 - AP: 151 lb N/a
 - Split: 142 lb N/a

- Differences > 18 lb N/a in EONR:
 - $EONR_{AP} > EONR_{split}$ (n=19, 39%)
 - EONR_{AP} < EONR_{split} (n=11, 22%)
 - $EONR_{AP} = EONR_{split}$ (n=19, 39%)

Profitability of N timing is based on soil/site conditions

- Study average return to N:
 - AP: \$323/a
 - Split: \$343/a

- Differences >\$10/a in return to N at EONR:
 - AP > Split (n=16, 36%)
 - AP < Split (n=18, 41%)</p>
 - AP = Split (n=10, 23%)

Improve N use efficiency and profitability by considering soil drainage class

- Time of N application influences time of potential N loss
 - N application rates > MRTN_{0.10} have greatest loss potential
- On well-drained soils, N application timing doesn't typically influence yield
 - Consider costs associated with multiple applications
 - When no N is applied prior to planting, late N applications can result in early season crop stress
- On a somewhat poorly drained soil where there is a high probability of early season denitrification loss
 - Apply a majority of N in season
 - 40 lb N/a at late vegetative can rescue the crop
- On excessively drained and sandy soils where leaching is a concern, in-season applications are preferable

STOP SOIL EROSION SAVE OUR FUTURE

World Soil Day

5 DECEMBER 2019

Carrie Laboski

Professor & Extension Soil Scientist
Department of Soil Science
College of Ag & Life Sciences
Division of Extension

laboski@wisc.edu www.NPKetc.wisc.edu @NPKetc www.IPCM.wisc.edu

