

# Enlist E3: What Applicators Should Know About this New Trait

Sarah Striegel

MS Student

Rodrigo Werle, PhD

Assistant Professor & Extension Weed Scientist

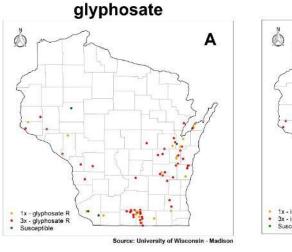


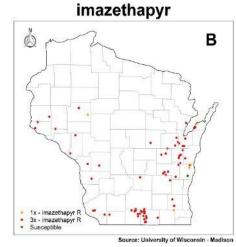


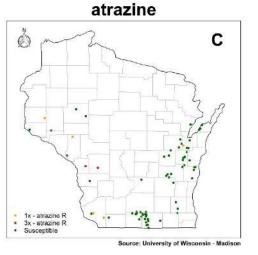


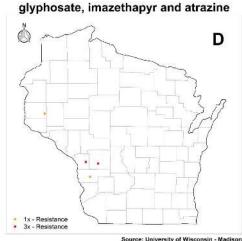
## Disclaimer

- Not to Endorse the Enlist E3 Technology
- Promote Effective Use of the Enlist E3 Technology





## Waterhemp Resistance in WI: Preliminary Results


| Treatment      | Populations | Resistant   | % Resistant |
|----------------|-------------|-------------|-------------|
|                | Screened    | Populations | Populations |
| 1x Glyphosate  | 86          | 82          | 95%         |
| 3x Glyphosate  | 86          | 60          | 70%         |
| 1x Imazethapyr | 82          | 79          | 96%         |
| 3x Imazethapyr | 82          | 75          | 91%         |
| 1x Atrazine    | 80          | 8           | 10%         |
| 3x Atrazine    | 80          | 2           | 3%          |





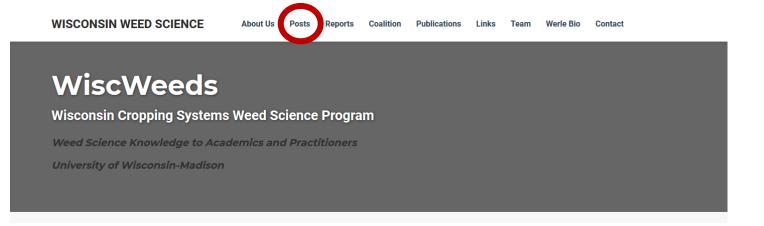




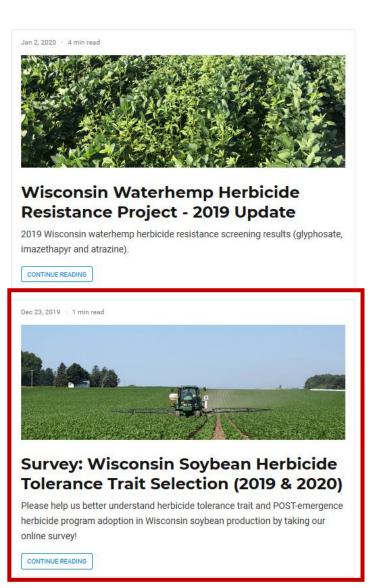





**Figure 1:** Distribution of waterhemp populations in Wisconsin according to their resistance level. Maps generated by Dr. Maxwel Oliveira.


MS Research: Felipe Faleco, UW-Madison WiscWeeds Program

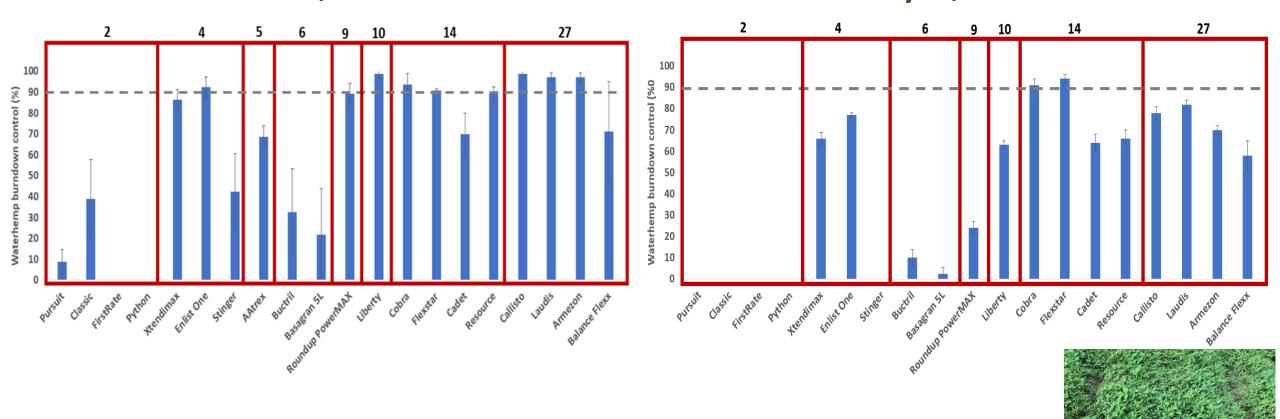
## Survey: Wisconsin Soybean Herbicide Tolerance Trait Selection (2019 & 2020)


Latest Posts

More Posts »






**Objective:** better understand herbicide tolerance trait and POST-emergence herbicide adoption in Wisconsin soybean production during 2019 and plans for 2020.



## Waterhemp Burndown Control 14 DAT

Lancaster, WI 2019

Brooklyn, WI 2019



## Large-Scale Dicamba Drift Studies

07/11/2018

Soybeans at V6 Wind speed = 3-6 mph Air Temp = 81 F 07/14/2019

Soybeans at V5-V6 Wind speed = 3-5 mph Air Temp = 82 F



| Treatment                 | Rate       |                  |        |
|---------------------------|------------|------------------|--------|
| (2018 and 2019)           |            |                  |        |
| Roundup PowerMax          | 32 fl oz/A | Treatment (2019) | Rate   |
| Xtendimax                 | 22 fl oz/A | + MON51817       | 1% v/v |
| Intact                    | 0.5% v/v   |                  | •      |
| TTI11004; 15 GPA; Boom    |            |                  |        |
| Nozzle spacing = 20-inche |            |                  |        |

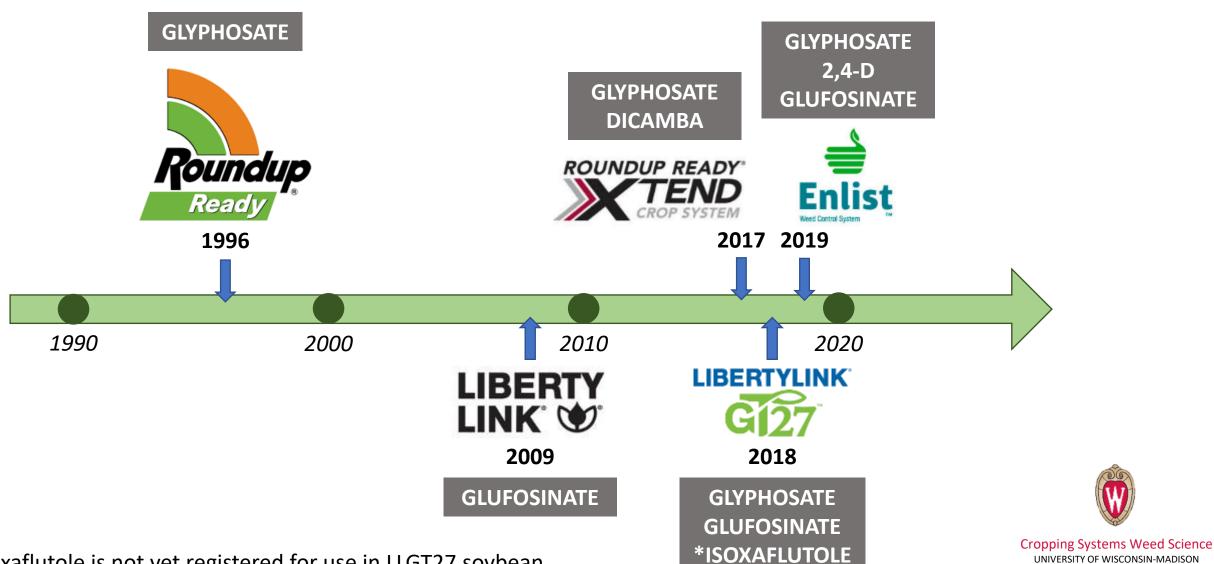






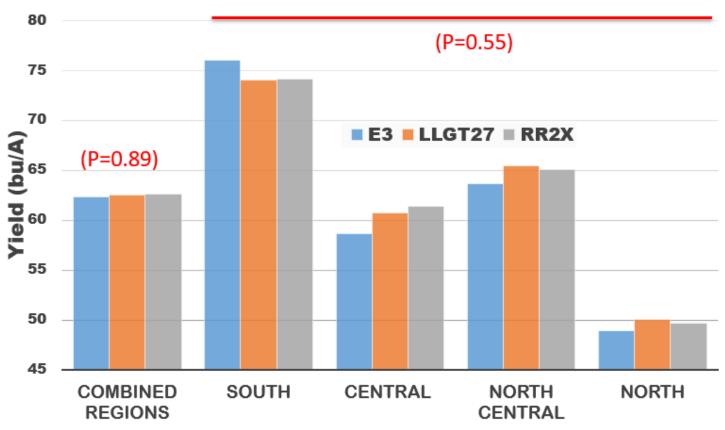
## Large-Scale 2,4-D Drift Study (2019)






## **Outline**

- So many trait options... why Enlist E3?
- Application Requirements
  - Sensitive area buffers
  - Susceptible crops
  - Carrier volume, tank mixing guidelines, tank cleanout
  - Drift particle and secondary movement
  - Weather considerations
- Performance in 2019 low tunnel volatility trial

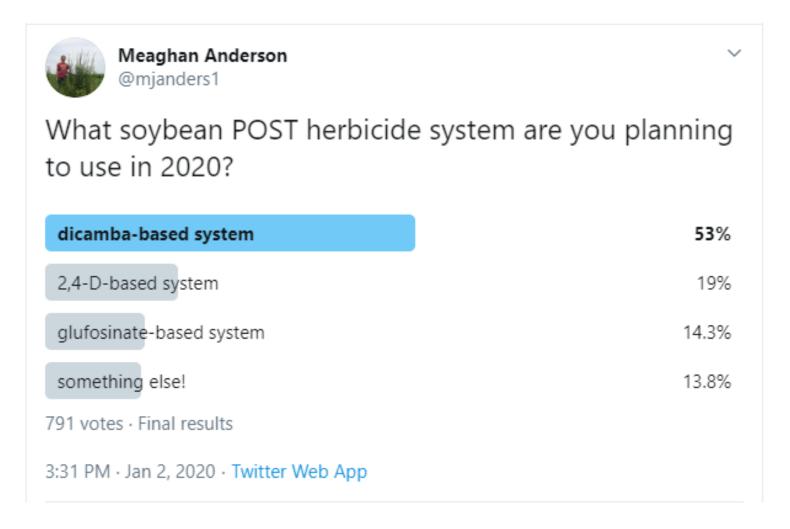



## Soybean Herbicide-Tolerant Traits



\*isoxaflutole is not yet registered for use in LLGT27 soybean

## Herbicide Trait Options In WI E3 vs LLGT27 vs RR2X






E3 N=26; LLGT27 N=41; RR2X N=97

\*We did not have enough RR or RR2Y entries to test against

## Herbicide selection



<sup>\*</sup>survey results from Meaghan Anderson, ISU Extension & Outreach Agronomist

#### For use on Enlist corn, soybean, and cotton





Convenient proprietary blend of 2,4-D choline and glyphosate

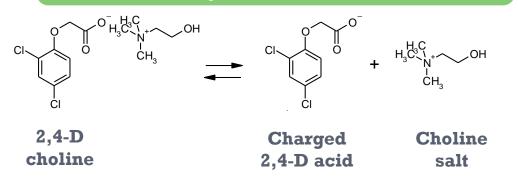
- Multiple modes of action in a convenient blend
- Fit for acres where grass control is needed; works well for burndown
- Improved tank stability for a blend that stays mixed



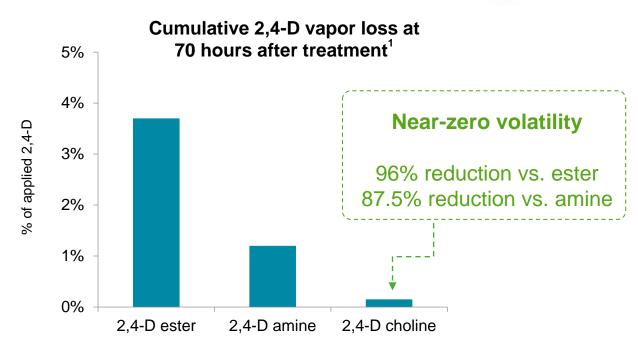
Straight-goods 2,4-D choline with additional tank-mix flexibility

- 2,4-D choline as the basis for exceptional control
- Compatibility to tank-mix with qualified glufosinate, residual herbicides, insecticides and more
- Customize the ratio of herbicides to match each farm's needs

#### Both with the on-target benefits of 2,4-D choline with Colex-D® technology


| APPLICATION RATE |                                                  |  |  |  |  |  |  |  |  |
|------------------|--------------------------------------------------|--|--|--|--|--|--|--|--|
| HERBICIDE        | Glyphosate-resistant or<br>hard-to-control weeds |  |  |  |  |  |  |  |  |
| Enlist Duo       | 4.75 pt./A                                       |  |  |  |  |  |  |  |  |
| Enlist One       | 2.0 pt./A                                        |  |  |  |  |  |  |  |  |




### 2,4-D choline: Inherently less volatile

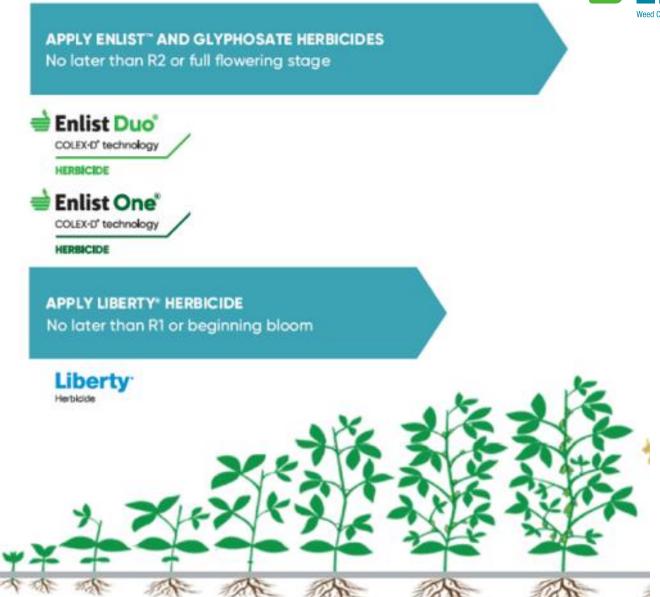
## 2,4-D amine (DMA) breaks apart, leaving behind volatile 2,4-D acid

## 2,4-D choline is more stable – stays associated








## 2,4-D choline is inherently less volatile than traditional forms of 2,4-D

Slide courtesy of Corteva



## **Enlist system**

- Start clean with good
   PRE program
- Weed size still important
- Offers flexibility in POST program and timing





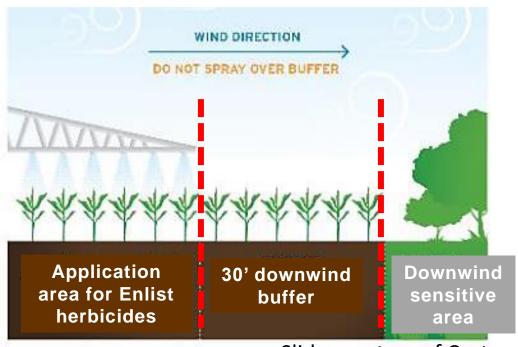
#### Sensitive area buffers

#### Sensitive area buffers ARE:

A requirement from EPA to protect potential endangered species habitat areas

Sensitive area examples

Wooded area


**Pasture** 

Roadside ditch

Lawns

#### **Sensitive area buffers ARE NOT:**

Meant to protect downwind adjacent susceptible crops – including non-Enlist cotton



Slide courtesy of Corteva



### Watch out for susceptible crops

**Non-Enlist cotton** 

#### **Cucurbits**

(ex. Watermelons, pumpkins)

**Tobacco** 

**Grapes** 

**Tomatoes** 

Fruiting vegetables

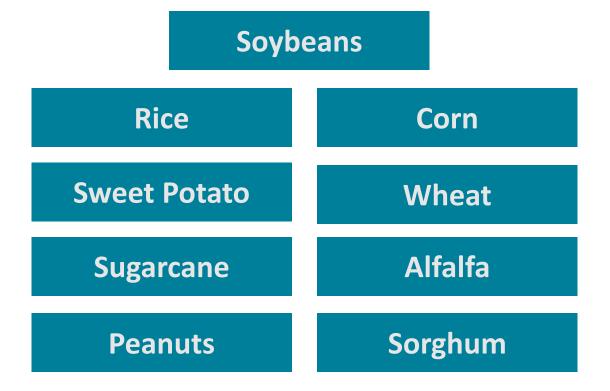


DO NOT SPRAY Enlist herbicides when adjacent susceptible crops are downwind.

E3 soybeans

Tomatoes /
Grapes

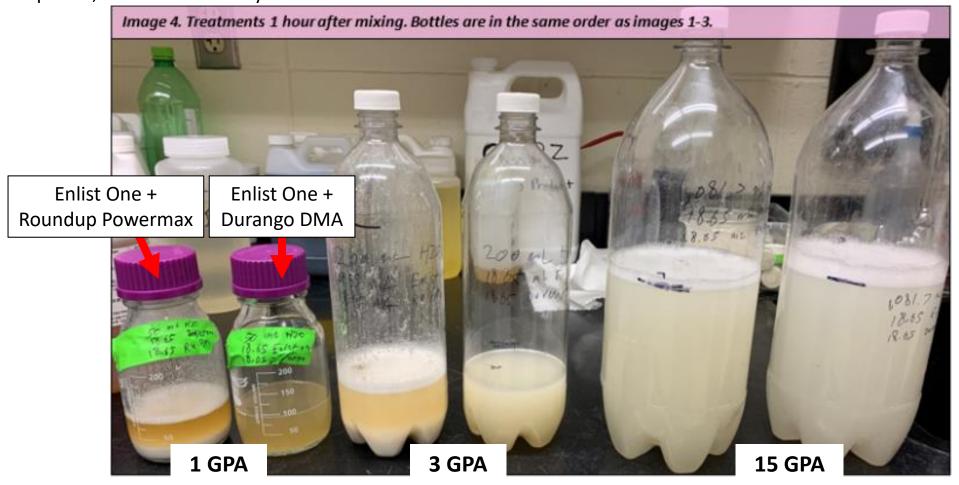





Do not apply Enlist herbicides
Slide courtesy of Corteva



## Key differentiation: Know the compatible crops


Key crops that are <u>not</u> listed as susceptible on the Enlist labels:





## **Carrier Volume Impacts Physical Compatibility**

When some potassium salts of glyphosate are mixed with Enlist One in inductor tanks, then the products quickly separate, and a white chalky residue is left behind.



Be sure to start with a clean sprayer before mixing a load with Enlist herbicides. Remember the required water carrier volume with Enlist herbicides is 10-15 gallons per acre. For more tips on sprayer setup, see the Enlist herbicides application guide.

#### LIQUID CARRIER

- Begin with half-full tank of water
- Begin agitation and continue throughout mixing process
- Add products in order:
  - AMS / water conditioning agents
  - 2. Pre-slurry water-soluble packets
  - Wettable powders/dry flowables
  - Compatibility agents
  - Liquid flowables
  - Capsule suspension (CS) or suspension emulsion (SE)

- Emulsifiable concentrate (EC)
  - Soluble liquids (SL)
  - Enlist Duo® herbicide at 4.75 pt/A
  - Enlist One herbicide at 2.0 pt/A When mixing with Enlist One, do not pour glufosinate ammonium products or glyphosate potassium into the tank at the same time as Enlist One. Add products one at a time, allowing enough time for recirculation between additions of each separate product.
    - Glyphosate products
- 8. Crop Oil Concentrate (COC), NIS, other adjuvants
- Top off with water carrier

- Use a high level of gallonage when mixing
- If mixing with other glyphosate formulations, check compatibility
- Plenty of water in between additions for induction tanks

Find the list of qualified tank mix partners at EnlistTankMix.com



Products listed on EnlistTankMix.com have not been tested for crop response. Listing is not an endorsement of use.

#### PRINT

The products listed below were tested as required by the conditions of registration for Enlist One and found not to adversely affect the spray drift properties of Enlist One herbicide.

Corteva Agriscience makes no warranties regarding crop tolerance or physical compatibility of tank mixes of these products with Enlist One. Listing is not an endorsement, an agronomic recommendation or an indicator of efficacy.

Corteva partners with the University of Nebraska – Lincoln to provide tank mix testing opportunities. Request information via the "contact us" form.

Products listed are name brand products.

#### **Herbicides**

Abundit Edge

Accent Q

**ACELLUS ATZ** 

Afforia

Aim EC

Ankur

Antares Prime

Anthem Flex

enlisttankmix.com



QUALIFIED NOZZLES

Enlist One may only by tank-mixed with products that have been tested and found not to adversely affect the spray drift properties of Enlist One.

DO NOT TANK-MIX ANY PRODUCT WITH Enlist One unless:

- 1. You check the list of tested products found not to adversely affect the spray drift properties of Enlist One no more than 7 days before applying Enlist One; and
- 2. The product you tank-mix with Enlist one is identified on that list of tested products.

## Mixing note

#### Can you mix Enlist, Roundup Powermax, and Liberty together?

#### **Enlist One**

Roundup Powermax + Liberty <u>are listed</u> as approved tank mix partners

#### **Enlist Duo**

Liberty is not listed as an approved tank mix partner



## Tank cleanout



- Completely drain system
   (including pump, lines and boom)
   for at least five minutes.
- 2 Fill tank with clean water to at least 10% of total tank volume.
- Circulate through entire system at least 15 minutes.
- Spray out solution through boom/nozzles.



- Completely drain system
   (including lines and spray boom)
   for at least five minutes.
- Remove and clean filters and strainers.
- Fill tank with clean water to at least 10% of total tank volume (including cleaning agents at recommended rates if desired).
- 4 Circulate through system at least 15 minutes.
- Let solution stand for several hours, preferably overnight if time allows.
- Spray out solution through boom/nozzles.



- Completely drain system
   (including lines and boom)
   for at least five minutes.
- Fill tank with clean water to at least 10% total tank volume.
- 3 Circulate through entire system at least 15 minutes.
- 4 Spray out solution through boom/nozzles.
- Completely drain spray system, remove and clean nozzle tips and strainers separately.



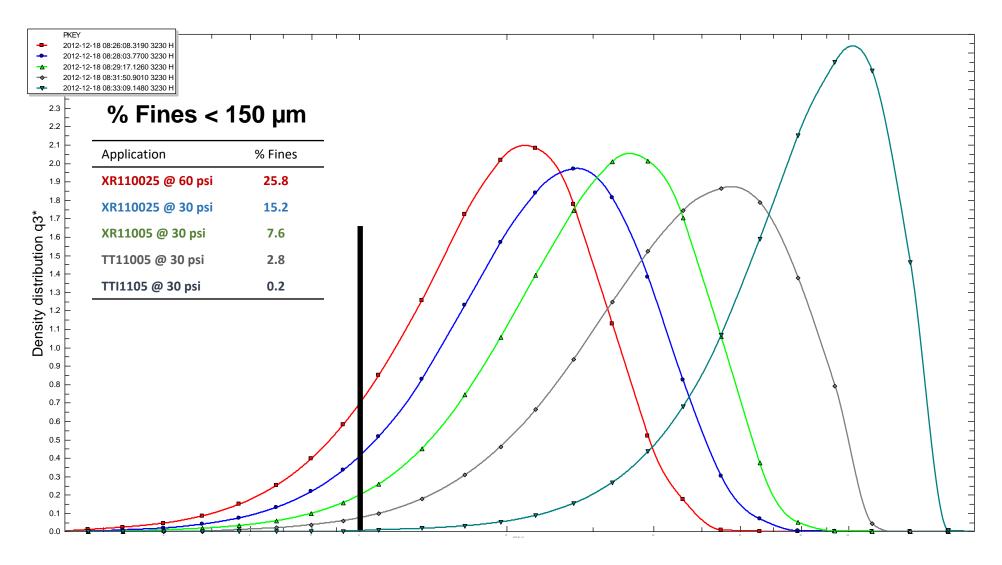
## **Definition of Drift**

## "Movement of <u>spray particles</u> and <u>vapors</u> off-target causing less effective control and possible injury to susceptible vegetation, wildlife, and <u>people</u>."

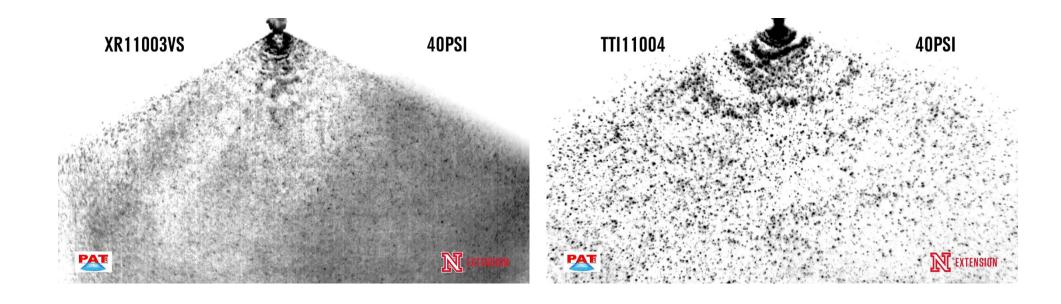
Adapted from National Coalition on Drift Minimization 1997 as adopted from the AAPCO Pesticide Drift Enforcement Policy - March 1991

#### **Types of Drift:**

- Particle drift: movement of spray particles during or after the spray application
  - → nozzle selection, wind speed and direction, boom height, temperature inversions
- Vapor drift: associated with volatilization (gas, fumes);
  - → temperature, formulation, wind speed and direction, temperature inversions




## How far will particles go?


| Droplet   | Diameter<br>(in μm) | Time to fall 10<br>ft | Travel distance in 3 mph wind |
|-----------|---------------------|-----------------------|-------------------------------|
| Fog       | 5                   | 66 min                | 15,840 ft                     |
| Very fine | 20                  | 4.2 min               | 1,100 ft                      |
| Fine      | 100                 | 10 sec                | 44 ft                         |
| Medium    | 240                 | 6 sec                 | 28 ft                         |
| Coarse    | 400                 | 2 sec                 | 8.5 ft                        |
| Fine rain | 1,000               | 1 sec                 | < 5 ft                        |

Source: Herbicide Spray Drift, NDSU Extension

## **Particle Drift - Nozzle Selection**



## **Particle Drift - Nozzle Selection**



#### Enlist One® herbicide LABELED NOZZLES WITH PRESSURE RANGES (PSI)

| MANUFACTURER | MODEL          | 10 | 20     | 30     | 40     | 50   | 60     | 70     | 80     | 90     | 100     |
|--------------|----------------|----|--------|--------|--------|------|--------|--------|--------|--------|---------|
| ALBUZ        | AVI 110-025    |    |        |        | MIN 40 |      | MAX 60 |        |        |        |         |
|              | AVI 110-03     |    |        |        | MIN 40 |      |        | N      | 4AX 80 |        |         |
|              | AVI 110-04     |    |        |        | MIN 40 |      |        |        |        | MAX 90 |         |
|              | AVI 110-05     |    |        |        | MIN 40 |      |        |        |        | MAX 90 |         |
|              | AVI 110-06     |    |        |        | MIN 40 |      |        |        |        | MAX 90 |         |
| REENLEAF     | TADF 025-D     |    |        | MIN 30 |        |      |        |        |        | MAX 90 |         |
|              | TADF 03-D      |    |        | MIN 30 |        |      |        |        |        | MAX 90 |         |
|              | TADF 04-D      |    |        | MIN 30 |        |      |        |        |        | MAX 90 |         |
|              | TADF 05-D      |    |        | MIN 30 |        |      |        |        |        | MAX 90 |         |
|              | TADF 06-D      |    |        | MIN 30 |        |      |        |        |        | MAX 90 |         |
|              | TDXL 110-03*   |    |        | MIN 30 |        |      |        |        | 4AX 80 |        |         |
|              | TDXL 110-4*    |    |        | MIN 30 |        |      |        | , l    | 4AX 80 |        |         |
|              | TDXL 110-06*   |    |        | MIN 30 |        |      |        |        |        | MAX 90 |         |
|              | TDXL 110-08    |    |        | MIN 30 |        |      |        |        |        | MAX 90 |         |
|              | TDXL 110-02-D  |    |        | MIN 30 |        |      |        |        |        | MAX 90 |         |
|              | TDXL 110-025-D |    |        | MIN 30 |        |      |        |        |        | MAX 90 |         |
|              | TDXL 110-03-D* |    |        | MIN 30 |        |      | м      | 1AX 70 |        |        |         |
|              | TDXL 110-04-D* |    |        | MIN 30 |        |      |        |        |        | MAX 90 |         |
|              | TDXL 110-06-D* |    |        | MIN 30 |        |      |        |        |        | MAX 90 |         |
|              | TDXL 110-08-D* |    |        | MIN 30 |        |      |        |        |        |        | MAX 100 |
|              | TDXL 025-D     |    |        | MIN 30 |        |      |        |        | 08 XAN |        |         |
| IYPRO        | ULD 120-04*    |    | MIN 15 |        |        |      |        | , l    | 08 XAN |        |         |
| OHN DEERE    | ULD 120-05*    |    | MIN 15 |        |        |      | M      | 1AX 70 |        |        |         |
|              | ULD 120-06     |    | MIN 15 |        |        |      | MAX 65 |        |        |        |         |
| ECHLER.      | ID 110-03      |    |        | MIN 30 |        |      | MAX 60 |        |        |        |         |
| in of falls  | ID 110-04*     |    |        | MIN 30 |        |      |        | , l    | 4AX 80 |        |         |
|              | ID 110-05*     |    |        | MIN 30 |        |      | MAX 60 |        |        |        |         |
| EEJET        | AI 110-02      |    |        | MIN 30 |        |      |        | 4      | 4AX 80 |        |         |
|              | AI 110-025     |    |        | MIN 30 |        |      |        | 4      | 4AX 80 |        |         |
|              | AI 110-03      |    |        | MIN 30 |        |      |        | N      | 4AX 80 |        |         |
|              | AI 110-04*     |    |        | MIN 30 |        |      |        | l l    | 4AX 80 |        |         |
|              | AI 110-05*     |    |        | MIN 30 |        |      |        | , l    | 4AX 80 |        |         |
|              | AI 110-06*     |    |        | MIN 30 |        |      |        | ħ      | 4AX 80 |        |         |
|              | AL 110-08*     |    |        | MIN 30 |        |      |        | ħ      | 4AX 80 |        |         |
|              | AITTJ 110-04   |    | MIN 2  |        | MAX    | X 50 |        |        |        |        |         |
|              | AITTJ 110-06*  |    | MIN 2  | :0     |        |      | MAX 60 |        |        |        |         |
|              | AIXR 110-04*   |    | MIN 15 |        |        |      | MAX 60 |        |        |        |         |
|              | AIXR 110-05*   |    | MIN 15 |        |        |      | MAX 60 |        |        |        |         |
|              | AIXR 110-06*   |    | MIN 15 |        |        |      | MAX 60 |        |        |        |         |
|              | TTI 110-02     |    | MIN 15 |        |        |      |        |        | 4AX 80 |        |         |
|              | TTI 110-025    |    | MIN 15 |        |        |      |        |        | 4AX 80 |        |         |
|              | TTI 110-03     |    | MIN 15 |        |        |      |        |        | 4AX 80 |        |         |
|              | TTI 110-04°    |    | MIN 15 |        |        |      |        |        | 4AX 80 |        |         |
|              | TTI 110-05     |    | MIN 15 |        |        |      |        |        | 4AX 80 |        |         |
|              | TTI 110-06     |    | MIN 15 |        |        |      |        | h      | 08 XAN |        |         |
| W OFF        | MR 110-06*     |    |        | MIN 30 |        |      | MAX 60 |        |        |        |         |
| VILGER       |                |    |        |        |        |      |        |        |        |        |         |
| VILGER       | MR 110-08*     |    |        | MIN 30 |        |      |        | 1AX 70 |        |        |         |

https://www.enlist.com/en/approvedtank-mixes/enlist-one/enlist-oneallowable-nozzles.html



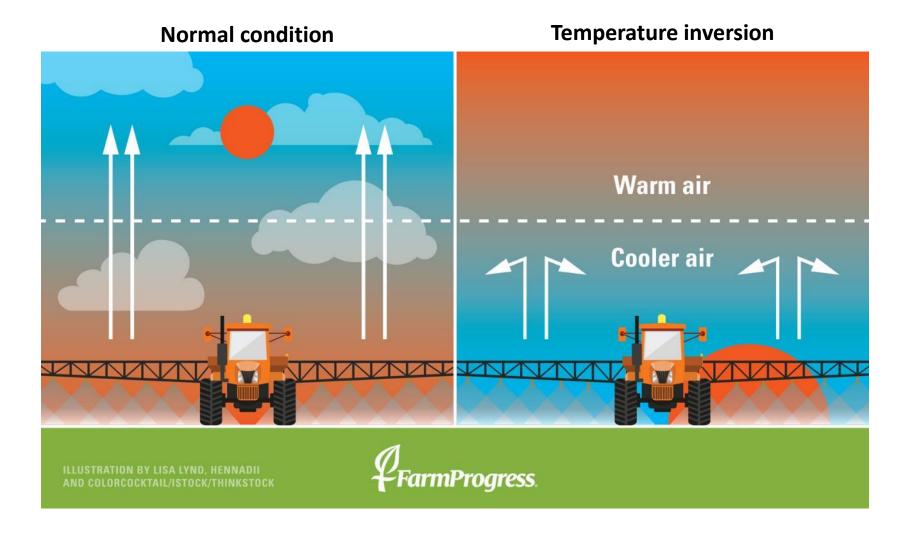
<sup>\*</sup> Indicates nozzle also qualified with Enlist Duo herbicide.

#### Enlist Duo® herbicide LABELED NOZZLES WITH PRESSURE RANGES (PSI)

| MANUFACTURER        | MODEL                                     | 0   | 10       | 20                      | 30               | 40             | 50   | 60               | 70     | 80     | 90               | 100     | )                            |                            |                      |                    |                         |                     |                                     |                        |
|---------------------|-------------------------------------------|-----|----------|-------------------------|------------------|----------------|------|------------------|--------|--------|------------------|---------|------------------------------|----------------------------|----------------------|--------------------|-------------------------|---------------------|-------------------------------------|------------------------|
| ABJ AGRI            | ABJ 110-04<br>ABJ 110-06                  |     |          |                         |                  | N 40 MAX 40    |      |                  |        |        |                  |         |                              |                            | )                    | <i>*</i>           |                         |                     |                                     |                        |
| GREENLEAF           | TDXL 110-03<br>TDXL 110-04<br>TDXL 110-06 |     |          |                         | MIN 30<br>MIN 30 | MAX 45         |      |                  | MAX 75 |        |                  |         | TeeJ                         | et                         |                      |                    |                         |                     |                                     |                        |
|                     | TDXL 110-03-1<br>TDXL 110-04-1            | D   |          |                         | MIN 30<br>MIN 30 |                |      |                  |        |        | MAX 90<br>MAX 90 |         | (1)                          | S)<br>PSI                  | AIXR<br>DROP<br>SIZE | AI<br>DROP<br>SIZE | AITTJ60<br>DROP<br>SIZE | TTI<br>DROP<br>SIZE | CAPACITY<br>ONE<br>NOZZLE<br>IN GPM | NOZZLE                 |
|                     | TDXL 110-06-1<br>TDXL 110-08-1            |     |          |                         | MIN 30           |                |      |                  | М      | AX 80  |                  | MAX 100 | AIXR<br>11003                | 15<br>20                   | XC                   | -                  | -                       | -                   | 0.18<br>0.21                        | 23<br>27               |
| HYPRO<br>JOHN DEERE | ULD 120-04<br>ULD 120-06                  |     |          | IN 15<br>IN 15          |                  | MA             | X 50 | М                | AX 70  |        |                  |         | (50)<br>AI, AIXR             | 30<br>15<br>20<br>30       | VC<br>UC<br>XC<br>XC |                    | -                       | UC<br>UC<br>UC      | 0.26<br>0.24<br>0.28                | 33<br>31<br>36         |
| LECHLER             | ID 110-04<br>ID 110-05                    |     |          |                         | MIN 30           |                |      | MAX 60           |        |        |                  |         | TTI<br>11004                 | 40<br>50                   | VC<br>-              | VC<br>VC           | :                       | UC<br>UC<br>UC      | 0.35<br>0.40<br>0.45                | 45<br>51<br>58         |
| TEEJET              | AI 110-04<br>AI 110-06                    |     |          |                         | MIN 30           |                | ١    | MAX 60<br>MAX 60 |        |        |                  |         | (50)                         | 60<br>70<br>80<br>15       | -<br>UC              | - VC               |                         | XC<br>XC            | 0.49<br>0.53<br>0.57<br>0.37        | 63<br>68<br>73<br>47   |
|                     | AI 110-08<br>AITTJ 60-110-<br>AIXR 110-03 | -06 | М        | MIN 20<br>IN 15 M       | MIN 30           |                |      |                  | AX 70  |        |                  |         | AI, AIXR<br>AITTJ60<br>11006 | 15<br>20<br>30<br>40<br>50 | VC<br>VC             | XC<br>XC           | UC<br>XC<br>VC          |                     | 0.42<br>0.52<br>0.60<br>0.67        | 54<br>67<br>77<br>86   |
|                     | AIXR 110-04<br>AIXR 110-06<br>TTI 110-04  |     | MI<br>MI | IN 15<br>IN 15<br>IN 15 | MA               | XX 40<br>XX 40 |      |                  |        | MAX 85 |                  |         | (50)<br>AI<br>11008          | 30<br>40<br>50             | -                    | UC<br>UC<br>XC     | -                       | -                   | 0.73<br>0.69<br>0.80<br>0.89        | 93<br>88<br>102<br>114 |
| WILGER              | MR 110-06<br>MR 110-08                    |     |          |                         | MIN 30           |                |      | MAX 60<br>MAX 60 |        | MAX    |                  |         | (50)                         | 60<br>70                   |                      | VC<br>VC           |                         |                     | 0.98<br>1.06                        | 125<br>136             |

https://www.enlist.com/en/approved-tank-mixes/enlist-duo-allowable-nozzles.html




## Weather considerations

- Wind speed restrictions under 15 mph
- High temperature + low relative humidity = greater risk for vapor drift
- Temperature inversions

#### Temperature Inversions

Applications should not occur during a local, low level temperature inversion because drift potential is high. Temperature inversions restrict vertical air mixing, which causes small suspended droplets to remain in a concentrated cloud. This cloud can move in unpredictable directions due to the light variable winds common during inversions. Temperature inversions are characterized by increasing temperatures with altitude and are common on nights with limited cloud cover and light to no wind. They begin to form as the sun sets and often continue into the morning. Their presence can be indicated by ground fog; however, if fog is not present, inversions can also be identified by the movement of the smoke from a ground source generator. Smoke that layers and moves laterally in a concentrated cloud (under low wind conditions) indicates an inversion, while smoke that moves upward and rapidly dissipates indicates good vertical air mixing.

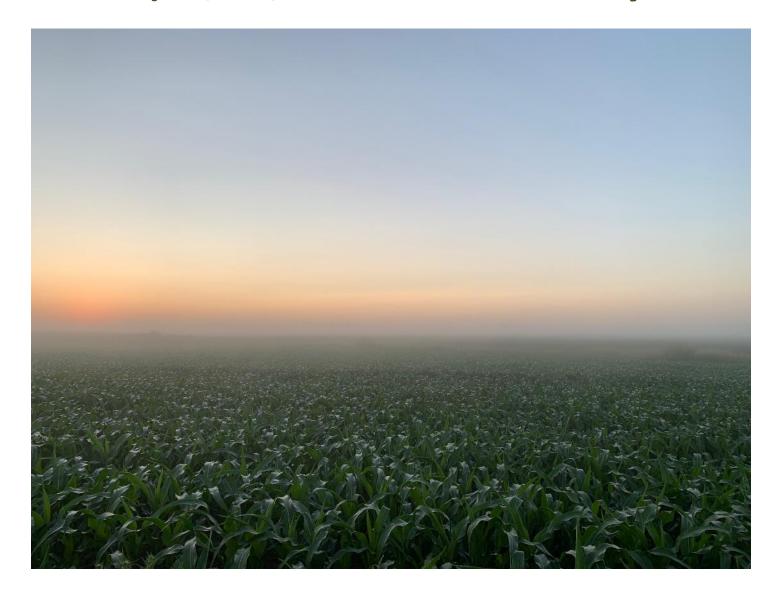
## **Temperature Inversion**



## How Common are Surface Temperature Inversions in Northwest Missouri?

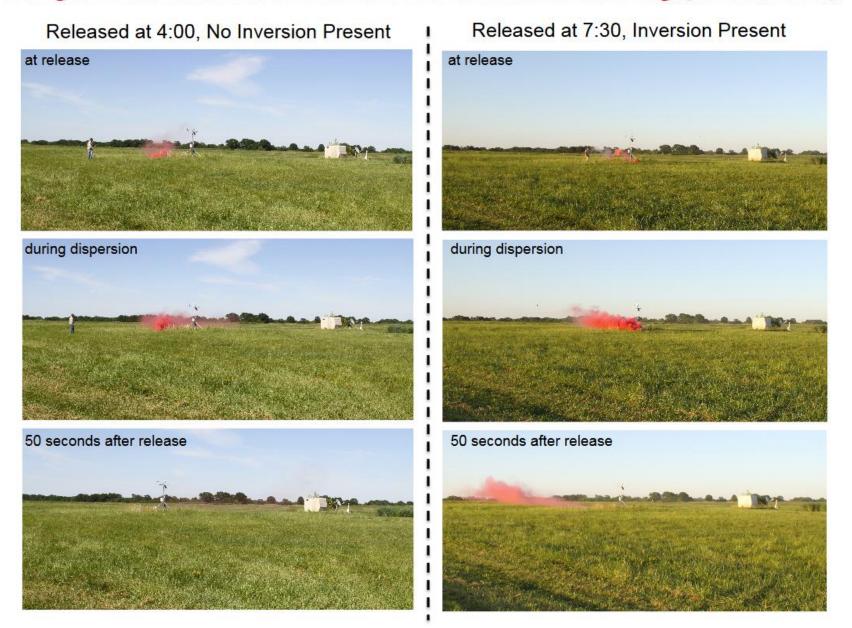


#### Northwest Missouri


|       | Number of | Inversionsa | Typical Start Timeb |                   |  |  |  |  |  |
|-------|-----------|-------------|---------------------|-------------------|--|--|--|--|--|
|       | 2015      | 2016        | 2015                | 2016              |  |  |  |  |  |
| March | 24        | 15          | 5:00 to 6:00 p.m.   | 5:00 to 6:00 p.m. |  |  |  |  |  |
| April | 23        | 13          | 6:00 to 7:00 p.m.   | 6:00 to 7:00 p.m. |  |  |  |  |  |
| May   | 15        | 24          | 6:00 to 7:00 p.m.   | 6:00 to 7:00 p.m. |  |  |  |  |  |
| June  | 13        | 29          | 6:00 to 7:00 p.m.   | 6:00 to 7:00 p.m. |  |  |  |  |  |
| July  | 12        | 14          | 6:00 to 8:00 p.m.   | 7:00 to 8:00 p.m. |  |  |  |  |  |

alnversions were classified as air temp at 46 cm above surface < air temp at 168 cm < air temp at 305 cm; temperature differences had to occur for > 1 hour in duration and intensity had to be > 1.0°C between 305 and 46 cm air temperatures.

Bish and Bradley, unpublished


<sup>&</sup>lt;sup>b</sup>Mode was used to determine typical start times

## Temp Inversion (07/12/2019, Dane County, WI at Sunrise)



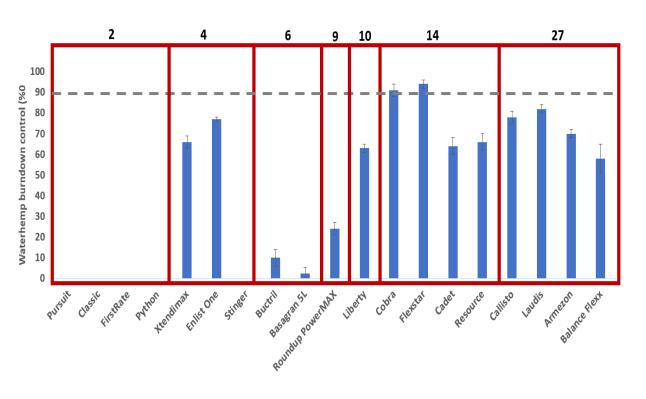


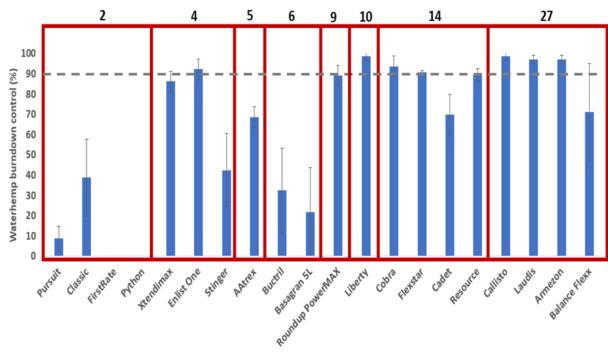
#### Using Smoke Grenades to Validate our Inversion Modeling (June 8, 2017)



\*Slide courtesy of Dr. Kevin Bradley, University of Missouri

## Getting the Most out of 2,4-D


- 1. Start clean & use an effective PRE-emergence herbicide
- 2. Spray small weeds & consider a layered-residual approach
- 3. Large droplet size
- 4. Understand the landscape (be aware of sensitive areas)
- 5. Follow label requirements by the book!
  - Tank-mix partners
  - Nozzle selection
  - Weather/Time of day restrictions




## Waterhemp Burndown Control 14 DAT

Brooklyn, WI 2019

Lancaster, WI 2019







#### 19-BRO-SB17

- Sponsor: BASF
- Enlist E3 Soybean, dominant species: waterhemp
- **EPOST:** 7/1 1-3" weeds/V2 soybean
- **LPOST:** 7/18 1-4" weeds/R1 soybean
- Treatments
  - Verdict @ 5 fl oz/a was applied to all treatments PRE

| Enlist Duo @ 56 fl oz/a                                                                                     |                                    |  |  |  |
|-------------------------------------------------------------------------------------------------------------|------------------------------------|--|--|--|
| Liberty @ 32 fl oz/a + Roundup PM @ 32 fl oz/a + AMS @ 3 lb/a                                               | PRE <i>fb</i>                      |  |  |  |
| Liberty @ 32 fl oz/a + Enlist One @ 24 fl oz/a + AMS @ 3 lb/a                                               |                                    |  |  |  |
| Liberty @ 32 fl oz/a + Enlist One @ 24 fl oz/a + Roundup PM @ 32 fl oz/a + AMS @ 3 lb/a                     | dup PM @ 32 fl oz/a + AMS @ 3 lb/a |  |  |  |
| Liberty @ 32 fl oz/a + Roundup PM @ 32 fl oz/a + AMS @ 3 lb/a <i>followed by</i> Enlist Duo @ 56 fl oz/a    | <b>3-pass</b><br>PRE <i>fb</i>     |  |  |  |
| Enlist Duo @ 56 fl oz/a <i>followed by</i><br>Liberty @ 32 fl oz/a + Roundup PM @ 32 fl oz/a + AMS @ 3 lb/a | EPOST <i>fb</i><br>LPOST           |  |  |  |



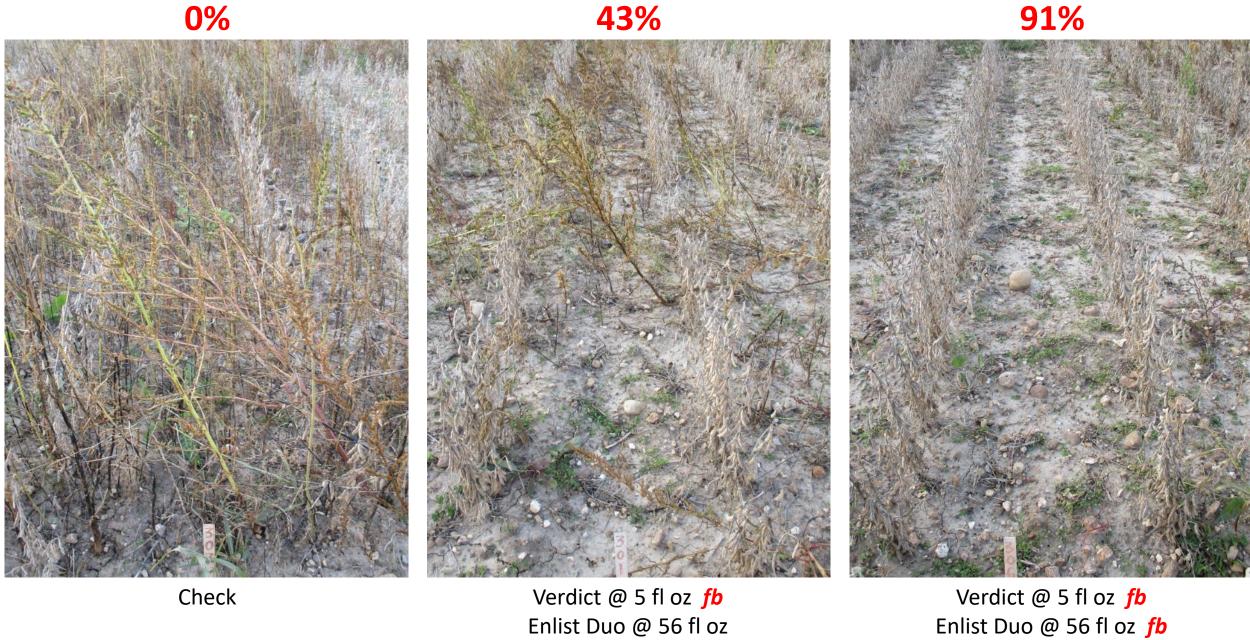
Plots at E POST application: 7/1



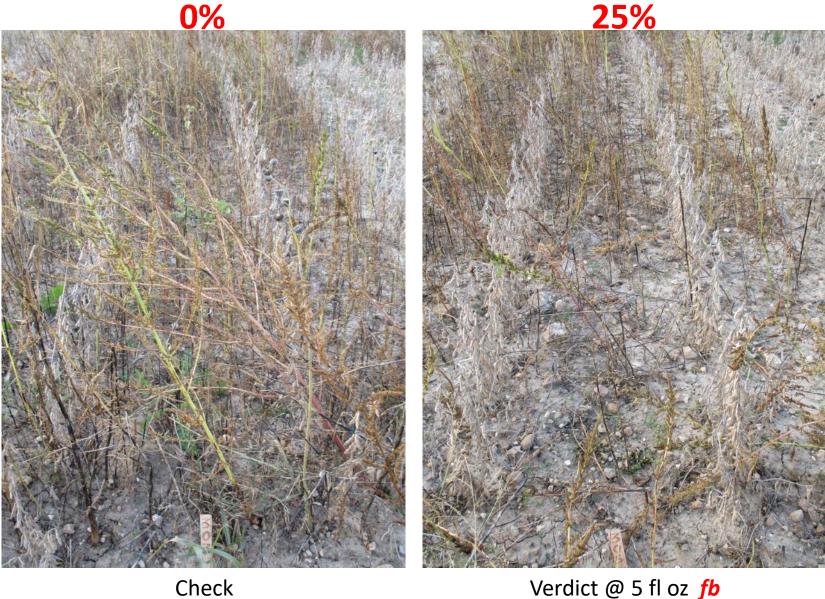


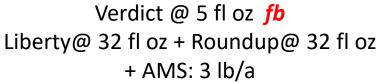
Check




Verdict @ 5 fl oz **fb** Enlist Duo @ 56 fl oz




Verdict @ 5 fl oz **fb**Liberty @ 32 fl oz +
Roundup @ 32 fl oz +
AMS: 3 lb/a




**70%** 



Enlist Duo @ 56 fl oz **fb**Liberty@ 32 fl oz + Roundup@ 32 fl oz
+ AMS: 3 lb/a







Verdict @ 5 fl oz **fb**Liberty@ 32 fl oz + Roundup@ 32 fl oz
+ AMS: 3 lb/a **fb**Enlist Duo @ 56 fl oz

# Performance in 2019 Low Tunnel Volatility Trial

- Growth regulator herbicides (such as dicamba and 2,4-D) commonly used post-emergence (POST) in corn, and recently, resistant varieties of soybeans and cotton
- Numerous cases of growth regulator injury in susceptible varieties and species
  - Oue to misapplication, particle drift, and secondary movement

**Objective:** Investigate the impact inclusion of glyphosate in tank mix has on secondary movement of dicamba and 2,4-D.

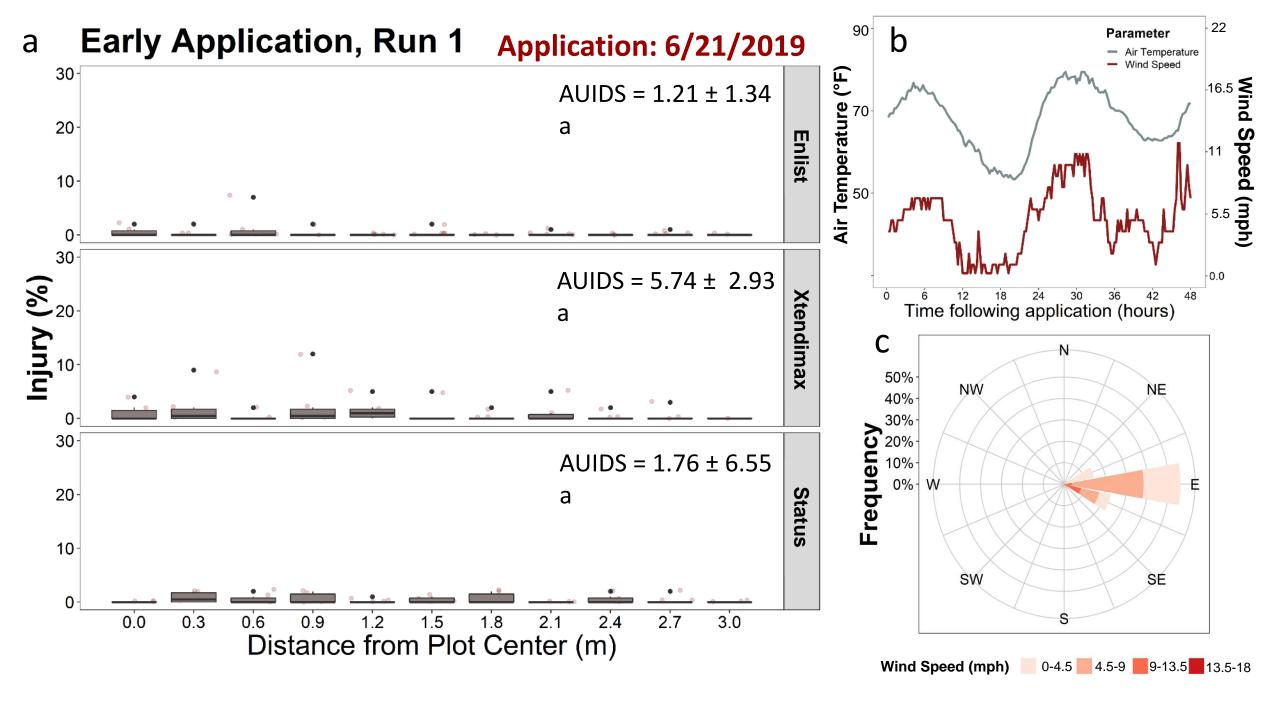


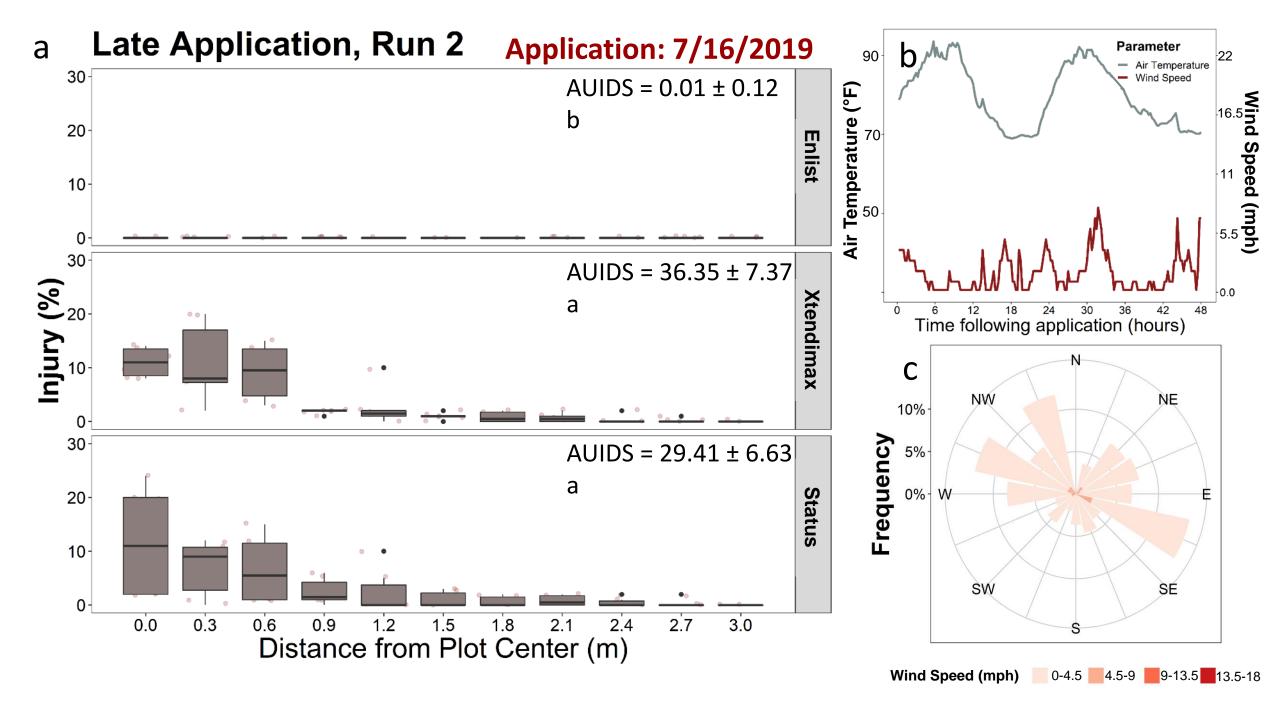
#### **Materials and Methods**

- Arlington, Wisconsin, 2019; replicated twice
- Simulated two application times in the season (early versus late), organized in a RCBD with three replications
- Seven treatments including one nontreated control (NTC)

| • | Xtendimax with Vaporgrip® (88 fl oz./ac.) | 4 | + Roundup Powermax (113 fl  |
|---|-------------------------------------------|---|-----------------------------|
|   | Status (20 oz./ac.)                       | 5 | oz/ac.)                     |
|   | Enlist One (96 fl oz./ac.)                | 6 | Enlist Duo (224 fl oz./ac.) |




#### **Materials and Methods**


- Soils flats sprayed off-site and placed into center of low-tunnels constructed over susceptible soybeans at V3-V4 for 48 hours
- Visual injury 0-100% collected 28 days after flat placement
- Data analyzed in R version 3.5.2
  - Olnjury data used to estimate "Area under the Injury over Distance stairs"











### Summary

- Presence/absence of glyphosate did not impact injury
- Xtendimax treatments typically showed the most injury, but Status showed comparable injury especially during adverse conditions 02,4-D treatments showed minimal to no symptomology for all application times
- Weather conditions following application seem to be a driving factor



#### **Take Home**

Know the label & follow it

Practice good herbicide-resistant trait stewardship

Prevent particle drift

Be aware of nearby susceptible crops















**CHEMICAL COMPANIES** 



# Thanks!

Rodrigo Werle, Ph.D.

Assistant Professor & Weed Specialist UW-Madison | UW-Extension

Email: <a href="mailto:rwerle@wisc.edu">rwerle@wisc.edu</a>

Phone: 608-262-7130

**Twitter: @WiscWeeds** 

**Blog: WiscWeeds.info** 



