Is Hybrid Rye a Viable Crop in Wisconsin?

Haleigh J. Ortmeier-Clarke

Adam Roth, John Gaska, & Shawn P. Conley
Introduction

• Cereal rye is a hardy winter annual that is often used as a cover crop due to low yields.

• Hybrid rye has been shown to have comparable forage and grain yields to other common crops in WI like wheat and triticale.

• However, there are currently no management recommendations for growers.
Importance

• Winter cover crops absorb nutrients and excess water in the fall and spring and can help prevent erosion throughout the winter when the soil would otherwise be bare.

• Rye is winter hardy, meaning it will survive the winter and begin growing again in the spring.

• Hybrid rye would provide these benefits on top of providing growers with a dual crop to utilize on the farm or sell.

• Hybrid rye is versatile and can be grown as a grain or as a forage, providing flexibility.
Methods

• Planted September 25, 2020

• Arlington Agricultural Research Station

• Two Split Plot Design Trials
 • Main Plot Treatment
 • Fall N: 0, 15, 30, 45 lbs. N ac\(^{-1}\)
 • Split Plot Treatments
 • Spring N: 0, 30, 60, 90, 120, 150 lbs. N ac\(^{-1}\)
 • Variety: KWS Serafino & KWS Propower
 • Triticale and Cereal Rye Check Plots
 • 60 lbs. N ac\(^{-1}\) in the spring (standard rate)
Methods

• Forage trial harvested May 17, 2021.

• Grain trial harvested July 21, 2021.

• Quality parameters were determined via NIR. Forage quality was analyzed at Dairyland Labs and grain quality was completed in-house.

• Analysis was completed using R Statistical Software (v. 4.1.0).
Hybrid Rye Forage Yield

Forage Yield (tons acre$^{-1}$)

Fall Nitrogen (lbs. N acre$^{-1}$)

Spring Nitrogen (lbs. N acre$^{-1}$)

Adj. R^2

0.38
0.33
0.23
0.19

Preliminary Data - Not for Publication
Hybrid Rye Forage Crude Protein

Forage Crude Protein (% DM⁻¹)

Spring Nitrogen (lbs. N acre⁻¹)

Adj. R²
0.63
0.43
0.46
0.41

Fall Nitrogen (lbs. N acre⁻¹) 0 15 30 45
Forage Partial Returns

Spring N (lbs. N acre\(^{-1}\))

Forage Partial Return ($/acre\(^{-1}\))

- Fall 0
- Fall 15
- Fall 30
- Fall 45

Preliminary Data - Not for Publication
Forage Partial Returns

Forage Partial Returns (§ acre\(^{-1}\))

Spring N (lbs. N acre\(^{-1}\))

- Fall 0
- Fall 15
- Fall 30
- Fall 45
- $0.50 Fall 0
- $0.50 Fall 15
- $0.50 Fall 30
- $0.50 Fall 45

Preliminary Data - Not for Publication
Hybrid Rye Grain Yield

- **Spring Nitrogen (lbs. N acre\(^{-1}\))**
- **Fall Nitrogen (lbs. N acre\(^{-1}\))**

Grain Yield (bu. acre\(^{-1}\))

- 0
- 15
- 30
- 45

Adj. R\(^2\)

- 0.36
- 0.27
- 0.17
- 0.19
<table>
<thead>
<tr>
<th>Crop</th>
<th>Hybrid Rye¹</th>
<th>Triticale²</th>
<th>Hybrid Rye¹</th>
<th>Rye³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purpose</td>
<td>Forage</td>
<td>Grain</td>
<td>Forage</td>
<td>Grain</td>
</tr>
<tr>
<td>Nitrogen (Fall, Spring) (lbs. ac⁻¹)</td>
<td>(0, 0)</td>
<td>(0, 60)</td>
<td>(45, 150)</td>
<td>(0, 60)</td>
</tr>
<tr>
<td>Avg. Yield (tons/bu ac⁻¹)</td>
<td>1.78c</td>
<td>2.90b</td>
<td>4.22a</td>
<td>2.93b</td>
</tr>
</tbody>
</table>

¹Hybrid Rye Varieties: KWS Propower & KWS Serafino ²Triticale Variety: Trical Ace ³Rye Variety: Spooner

At the same nitrogen rate, hybrid rye produces similar forage yields to triticale and produces almost double the grain yield of non-hybrid rye or winter wheat.

Is Hybrid Rye a Viable Crop in Wisconsin?

Yes, hybrid rye is a promising and viable crop in Wisconsin!
Summary

• Forage yield is not as dependent on fall nitrogen application as grain yield.
 • Treatments receiving no fall nitrogen required more spring nitrogen to produce adequate grain yields.

• With current fertilizer prices it will be important to balance input with returns.

• Hybrid rye is an exciting opportunity for WI farmers.

• This trial will be replicated at the Arlington and Lancaster research stations in 2022.
Acknowledgments

UW Bean Team
Shawn Conley
Adam Roth
John Gaska
Emma Matcham
Lindsay Chamberlain
Evan Robran

Matt Akins
Dairyland Laboratories
Questions?

coolbean.info

Scan QR Code for a link to the presentation.